
Card Detection – Poker Group

Jake Milanowski, William Thesken, Brendan Boewe, Jared Brown, Chirag Sirigere

CSSE463 Image Recognition

20 August 2021

Abstract

Image recognition shows numerous applications to

detection of card ranks and suits. Our proposed

model attempts to identify cards in natural

environments through image processing and

classification. To accomplish this, our model uses a

region-based convolutional neural network (R-CNN)

to crop important card identification regions from

natural images containing cards. Then, one of three

different classifiers identify the rank and suit of the

card found. Our results proved promising in the

identification of cards, with the highest of the three

classification models producing an accuracy of 77%.

However, full classification from natural images to

single cards proved difficult as R-CNN crop outputs

ranged in quality. As such, our report lends validity to

the use of numerous models (SVM, CNN, and

transfer) in card classification but warrants future

research in the cropping of cards in natural

environments to facilitate classification.

1 INTRODUCTION

The prevalence of playing cards in society is a

continuity throughout the breadth of history. Their

applicability to numerous games has leant them value

spanning cultural context and language. However,

this wide range of card applications – and the even

wider range of artistic contexts in which cards are

created – has led to many competing card companies

and designs.

Given this wide scope of cultural impact, there is

sufficient background and reasoning to explore

integration of playing cards with image recognition.

Card recognition has the potential to span numerous

applications, including uses in betting games such as

poker and blackjack, identification of cards in venues

such as casinos, or consumer novelty in

entertainment applications. Additionally, numerous

algorithms already hold the capability to perform well

in similar games but are limited to digital applications.

Image recognition of physical playing cards could help

connect digital game-playing artificial intelligences

with physical-world contexts.

Playing cards present a complex challenge in the field

of image recognition. Each card combines features to

culminate in 52 classes of recognition inherent in

each deck. Further, differing art between decks and

brands make each card a potentially unique

recognition task. Current research often uses singular

or a small variety of decks for training and testing.

This approach, while offering promising results on

more common deck types, leaves out the breadth of

art present in real world deck usage. To bridge the gap

between current models and the real world, more

generalizable classifiers are required.

Our solution attempts to rectify this issue by

providing an image recognition model that is

designed with multiple deck styles in mind. To

accomplish this, the model makes three crucial

considerations: suit, rank, and training dataset

quality. To identify suit and rank, three different

models were constructed, a support vector machine

(SVM) classifier, a custom convolutional neural

network (CNN), and a transfer network model based

on the image classifier AlexNet. The training dataset

was the final component to aid in classification

generalizability. Cards were selected from a variety of

different contexts and styles. They contain

backgrounds which range from none to natural with

varying dimensions and scales.

Figure 1: Queens found in the training dataset with varying
features and styles.

This breadth of training data ensures that the final

model accounts for the desired range in inputs and

outputs. For later models, modifications were made

to the data to increase accuracy. Data was fed into a

region-based convolutional neural network to crop

images to the corners of cards. This helped decrease

the impact of backgrounds and superfluous card

designs.

2 LITERATURE REVIEW

Playing card detection has seen numerous attempts

throughout the relevant literature. Among these,

continuities of procedure have arisen which provide

well recognized solutions to similar problems.

However, some continuities have found great

influence in our proposed solution more than others.

Zheng and Green [1] propose Playing Card

Recognition Using Rotational Invariant Template

Matching. Their recognition model matched images

with predesignated templates. While this

methodology proved accurate for their uses,

template matching was determined to limit

generalization too greatly for our model and as such

was not used. However, the model also used image

cropping and rotation to ensure that only relevant

image regions were used for classification. This

served as valuable inspiration for the use of our

model’s R-CNN for cropping. Further, it inspired

investigation of image rotation before the topic was

scrapped for feasibility reasons. Chen and Shung [2]

also propose another method of image

standardization, which uses the Hotelling Transform.

However, this was not used in our model.

Pimentel and Bernardino [3] in A Comparison of

Methods for Detection and Recognition of Playing

Cards propose two methods of image classification

after image standardization. One proposed method

uses a probability map of each rank and suit. This was

matched similarly in our model during the SVM

classification where the highest confidence was used

to classify each rank and suit.

Castillo, Goeing, and Westell [4] directly inspired our

SVM research by noting the validity of multiclass

support vector machine models. This was later found

to be inferior in our model to numerous single class

SVM models.

3 PROCESS

Several different methods were completed for

creating a playing card classification system. Each

method had its own unique challenges and

difficulties, as well as different setups.

Acquiring correct labeling for each image proved to
be difficult with our dataset. To obtain correct labels,
both training and testing datasets were organized in
2 separate ways, one for each classifier. The first was
organized using 13 folders separated by rank. The
same was done for suits. Both testing and training
data was organized in this way. This allowed us to
create labels for the cards based on the folder names
as opposed to manually inspecting and renaming
each card image file.

3.1 REGION-BASED CONVOLUTIONAL NEURAL NETWORK

Three R-CNNs were attempted on the original dataset

after preprocessing the training dataset to be used in

the SVMs and CNN transfer learning to determine the

card suit and rank. The preprocessing phase consisted

of labeling each corner of the six hundred sixty-four

cards as a ‘corner’ as shown in Figure 2. The images

are then resized to 227 x 227 pixels for the CNN to

handle.

Figure 2: Ground truth corner labels of the card.

Once the preprocessing phase was complete, the

dataset was run through an R-CNN with SqueezeNet,

a Fast R-CNN with ResNet50, and a Faster R-CNN with

ResNet50.

For the R-CNN transfer learning with SqueezeNet, the

last two layers were replaced with a new fully

connected layer and a new classification layer. A

typical transfer learning network is shown in Figure 3.

Figure 3: Typical transfer learning network model [5].

In the Fast R-CNN implementation of ResNet50, the

activation_40_relu was chosen as the feature

extraction layer and an ROI max pooling layer was

inserted after the feature extraction layer along with

an ROI input layer, as shown in Figure 4 below. The

last three modified layers from ResNet50 transfer

learning were also included with a new fully

connected layer and a box regression layer [5]. Figure

5 shows a typical Fast R-CNN network modification.

The way the Fast R-CNN works is that the algorithm

attempts to tighten its prediction of the proposed

region of interest, the bounding boxes from the Fast

R-CNN’s prediction, to accurately classify the corners

of the cards using the intersection over union metric

shown in Equation 1.

𝑎𝑟𝑒𝑎(𝐴∩𝐵)

𝑎𝑟𝑒𝑎(𝐴∪𝐵)
 (Equation 1)

Figure 4: The ResNet50 network showing the roiPool and
roiInput after the activation_40_relu layer.

Figure 5: Typical Fast R-CNN layer graph [5].

The third approach was the Faster R-CNN with

ResNet50. This network graph has a region proposal

network inserted after the feature extraction layer

and before the ROI max pooling layer. A typical Faster

R-CNN layer graph is shown in Figure 6.

The way the Faster R-CNN works is that the algorithm

attempts to predict the bounding boxes on its own in

the region proposal network using anchor boxes [5].

Instead of having a sliding window to find the ground

truth bounding boxes, a certain number of static

bounding boxes are added onto the image to locate

the ground truth bounding boxes [6]. An anchor box

size of twenty was used for the Faster R-CNN because

of its consistent high IoU metric and Figure 6 shows

one example of the anchor box to IoU (intersection

over union) plot.

Figure 6: Mean IoU to size of anchor box.

Figure 7: Typical Faster R-CNN layer graph [5].

The transfer learning R-CNN with SqueezeNet

resulted in a misclassification of the corner bounding

boxes, shown below in Figure 7, but had a better

accuracy at predicting the corner labels than the Fast

and Faster R-CNNs and in less time. The Faster R-CNN

implementation took five hours to fully train with ten

epochs and the classification of the corner was

corrupted by the automatic ROI proposal network.

Not only did the Fast R-CNN and the Faster R-CNN not

detect the bounding boxes in the correct locations

but they proposed bounding boxes that were

miniscule in size compared to the ground truth

bounding boxes.

Even though the proposed corners by the SqueezeNet

algorithm were riddled with false positives like the

banner lettering below in the testing dataset, it was

still possible to determine the suit and rank of the

entire card from the other images

Figure 8: Top left is the original image, and the other
images are proposed corners by the SqueezeNet transfer
learning model. Misclassification of the bottom banner in
the image as a corner of the card is shown in the bottom
left.

To predict the testing dataset rank and suit, the

cropped ground truth images were used on the

following algorithms to train and test the algorithms

on.

3.2 SVM

The SVM method for playing card classification used

feature extraction from a CNN, and then passed the

features into the SVM. AlexNet was chosen as the

CNN for feature extraction because it is a built-in CNN

in MATLAB and because of previous experience using

it. Features were extracted from the last fully

connected layer (‘fc7’) in AlexNet.

A multi-class SVM was originally used to classify the

data. Images and corresponding labels for all 52

playing cards were passed into AlexNet. Features

were extracted and then passed into MATLAB’s

fitcecoc() multi-class SVM function for training. After

the multi-class SVM was trained, it was used to

classify the data. It was found that using a multi-class

SVM to distinguish between 52 different classes

achieved a very low accuracy (only around 8%), so the

classification process was changed to improve the

model.

The classification process was broken apart such that

only a binary SVM (MATLAB’s fitcsvm() function) was

needed. To achieve this, the model was broken apart

to classify the suit and rank separately. First, the

models tested for each suit versus non-suit, then each

rank versus non-rank. This resulted in 17 SVM’s run

back-to-back on the test images (4 SVM’s for each

suit, and 13 SVM’s for each rank, using the process

shown in Figure 9). A score was recorded for each

rank and suit SVM. The suit and rank SVMs with the

greatest scores classified the suit and rank for the

card.

Figure 9: SVM Flowchart

The training data for each SVM was divided

differently for the suit and rank classifiers to make

sure each SVM was properly trained. For the suit

classifiers, the training set consisted of the entirety of

the available suit images and an equal amount of non-

suit images, divided evenly amongst each class. The

training images passed into the rank detector were

completed the same way, except the non-rank images

were broken apart into an equal number of images

from all 12 other ranks.

Each SVM used two hyperparameters – the box

constraint and kernel scale. These were optimized

using MATLAB’s fitcsvm() ‘bayesopt’ optimizer, as

well as ‘auto’ ‘OptimizeHyperparameters’ options.

The best estimated values for Box Constraint and

Kernel Scale were then passed into the fitting

function.

3.3 CNN

Similar to how the previous method used to separate

suit and rank classifiers, creation of two custom CNNs

was another possible solution to classify the suit and

rank of a card. Initially the first CNNs used the entire

image of a card, however, to increase performance

we would use cropped images that would display only

the rank and suit of the card. Those cropped images

were then downscaled. The combination of using a

crop and downscaling to a 50 x 40 image prevented

out of memory errors while training, allowed for

faster training of the model, and a higher accuracy

over each set. Using a CNN allows for filters in the

convolutional layers of the model to collect features

of the image automatically. The features get passed

to the fully connected layers of the model before

outputting a softmax classification.

In the final and most successful iteration of the

custom suit model, The Gambler Suit V4, the

architecture was based off a CNN designed for

determining whether or not a patient qualifies for

LASICK eye surgery and was modified to fit the needs

of suit classification. The suit classifier takes in a

50x40 image, consists of 36 layers when including

dropout, and outputs a classification of the card’s suit

(Clubs, Diamonds, Hearts, Spades). Further details of

the model are shown in the appendix.

The architecture used for the rank classifier was

similarly designed and consisted of 24 layers, and

outputs a rank for the card. Further details can be

found in the appendix.

3.4 TRANSFER LEARNING

Transfer learning reuses the feature extraction layers

of a prebuilt CNN but replaces the final few layers that

classify images. This saves an immense amount of

time on training and can result in higher accuracy as

prebuilt networks are often trained on millions of

images. For this project, AlexNet was used as it was

easy to work with and trained quickly. AlexNet is a

CNN consisting of 25 layers, the last 3 of which were

replaced for this project. Replacing the final 3 layers

allowed AlexNet to classify cards instead of the

output it was originally trained for. If the features

detected in AlexNet’s original training data were

similar enough to the relevant features distinguishing

playing cards, a high accuracy could be obtained.

The final 3 layers were replaced with a fully connected

layer, a softmax layer, and a classification layer. In

addition, the initial learning rates were set to a low

value, but a higher learning rate was used for the final

fully connected layer. Using these learning rates

allowed for quicker training as less epochs were

needed. Essentially, AlexNet did all the feature

extraction with its prebuilt layers, then classified with

the newly added layers.

Much like the other 2 methods, transfer learning was

split into separate classifiers; one for ranks and one

for suits. This increased accuracy as it dropped the

number of classes from 52 down to 13 and 4 for the

rank and suit classifiers respectively. The resulting

outputs from each classifier were then concatenated

to create the final classification for each card.

AlexNet requires a 227x227x3 input to run, meaning

all images in the dataset had to be rescaled to a size

of 227x227 with 3 colorbands (RGB). During the

resizing, any grayscale images were also converted to

RGB color space by duplicating their values across

each color band. This was done for all training and

testing data.

4 EXPERIMENTAL SETUP AND RESULTS

4.1 SVM

Using the original card data, the multi-class SVM did

poorly, only resulting in around an 8% accuracy. The

original data was also passed into the refined SVM

method (using sequential SVM’s), and performed

much better, although still poorly. In Table 1 below,

the accuracy for detecting each suit versus non-suit is

shown. Overall, the suit detector does very well. In

Table 2 below, the accuracy for detecting each rank

versus non-rank is shown. Most ranks perform well.

However, the overall rank accuracy is brought down

by ranks with a lower performance. For the original

data, the SVM method resulted in a 23.47% overall

accuracy.

Table 1: Accuracy of Suit Classification Using SVM

Method

Suits Accuracy (%)

Clubs 86.73
Spades 80.61
Hearts 78.57

Diamonds 79.59
Overall Suits 70.41

Table 2: Accuracy of Rank Classification Using SVM

Method

Ranks Accuracy (%)

Aces 77.55

2’s 81.63

3’s 69.39

4’s 72.45

5’s 65.31

6’s 90.82

7’s 66.33

8’s 70.41

9’s 60.20

10’s 82.65

J’s 71.43

Q’s 79.59

K’s 71.43

Overall Ranks 30.61

It was found that the SVM accuracy much worse than

the Transfer Learning and custom CNN, so the

cropped images were not ever classified using the

SVM.

4.2 CNN

A decision was made to first develop a custom model

for classifying the suit of the card. However, the

validation set results from the initial suit classifiers

were not satisfactory and ranged from ~21% - ~27%

depending on the model and the hyperparameters.

The original data set contained 539 training images

and 100 testing images while the cropped image set

contained roughly 1400 training images, 100 of which

were used for testing. 20% of the training images for

each set were used for validation. Using cropped

images increased the training and test performance.

Training was much faster since it had smaller input

images to train on, and accuracy for each set

increased as well. To further increase performance of

the suit classifier, images and input shape of the

model were downscaled. This too increased training

speed and improved accuracy.

Finally, the hyperparameters used for training the

most successful model were an Adam optimizer with

a learning rate of 0.0001, 400 epochs, and loss

calculated using sparse categorical cross-entropy.

Batch size for training was not used but could have

improved training speed for the suit model. Two

models were tested, one with the lowest validation

loss and the other from the last epoch. Both achieved

an accuracy of 90% on the test set, so the one with

the lowest validation loss was selected as our final

suit model.

Once the suit model was complete, we then created

a rank model. To achieve success for this part of the

problem, many tweaks to the hyperparameters were

needed. For this model, batches were set to 1000.

The other hyperparameters used for training were an

Adam optimizer with learning rate of 0.0001, an

epoch count of 600, and sparse categorical cross-

entropy used for loss. Two models were once again

tested, one with the lowest validation loss and one

from the last epoch. The test accuracy of the lowest

validation loss model was lower than the test

accuracy of the final epoch model. The lowest

validation loss model had a test accuracy of 64% while

the final epoch model surpassed it with a test

accuracy of 68%.

With the suit and rank models, there is a suit test

accuracy of 90% and rank test accuracy of 68% (Table

3), while the rank accuracy is lower than the suit

model.

Table 3: Rank And Suit Test Accuracy Of Custom CNNs

Model Accuracy (%) Loss

Suit 90 1.1068
Rank 68 4.7762

The custom rank CNN still has room for improvement

as an accuracy of at least 90% is desired. While the

customs CNNs were more accurate than their

respective SVMs, the transfer learning models

outperformed both.

4.3 TRANSFER LEARNING

The first dataset used for transfer learning was the

original unchanged images. The only change the

images underwent was rescaling for input into

AlexNet. 30% of the training set was used for

validation when training both the suit and the rank

CNNs. A minibatch size of 20, validation patience of

10, and initial learning rate of 1x10-4 were used when

training the suit network. In addition, the maximum

allowed epochs were set to 6. When training the rank

network, the same options were applied, but the

maximum allowed epochs were set to 7.

The resulting accuracies were less than stellar. The

suit classifier was roughly 65% accurate while the

rank classifier was about 51% accurate for a total

combined accuracy of 33.67%.

Using the cropped dataset vastly improved results of

both classifiers. For the cropped dataset, 200 of the

1450 test images were partitioned to create the test

set and 30% of the remaining training data was used

as a validation set. The suit classifier used a minibatch

size of 100, validation patience of 10, initial learning

rate of 1x10-4, and max epochs of 4. The rank classifier

used a minibatch size of 20, but all the other options

stayed the same. These resulted in much higher

accuracies. The accuracies for all models and data

used are summarized in Table 4. Figures from the

training process and results are shown as well in

figures 10 through 17.

Table 4: Transfer Learning Accuracies on Test Set.

 Suit
Accuracy

Rank
Accuracy

Total
Accuracy

Original
Data

64% 51% 33.5%

Cropped
Data

95% 81% 77%

Figure 10: Suit transfer learning training results for original data

Figure 11: Rank transfer learning training results for original data

Figure 12: Suit transfer learning training results for cropped data

Figure 13: Rank transfer learning training results for cropped data

Figure 14: Suit transfer learning confusion matrix for
original data

Figure 15: Rank transfer learning confusion matrix for
original data

Figure 16: Suit transfer learning confusion matrix for
cropped data

Figure 17: Rank transfer learning confusion matrix for
cropped data

5 DISCUSSION

Our models produced admirable results individually,

which lends credibility to the application of each of

their algorithms to the task of playing card

recognition. However, taken together, the model

produced is best described as volatile.

To discuss this volatility, it is most important to look

at the classifier input, produced using the image

cropping R-CNN.

Figure 18: Original image and detected cropping region.

The original image in Figure 18 was completely

misclassified as a corner. This was a problem in the

SqueezeNet transfer learning R-CNN’s feature

extraction layer and the training images. In Figure 19,

the last convolutional layer is shown indicating that

the features extracted from the convolutional layer

were not enough to classify a card’s corner. Because

the backgrounds vary among the card images, the

detector is unable to determine the corners. Figure 20

shows the center of a card being detected as a card

corner as well.

Figure 19: Final convolutional layer of the SqueezeNet
transfer learning network.

Figure 20: Test dataset image of an entire image being
misclassified.

When images are cropped correctly, all three models

perform well in their classification of individual

features yet vary in their quality of combined feature

classification. The support vector machine model is

the clearest example of this. Individual rank classifiers

ranged in accuracy from 60% to 90%. However,

overall rank classification was only 30% accurate. This

is likely due in fact to the number of categories being

classified. The likelihood that any classifier results in a

false positive is considerably higher than any single

classifier. Should that false positive receive a higher

score than the correct class, the image is classified

incorrectly.

While this issue was amplified by the numerous

classifiers required in the support vector machine

model, it remained a constant between all models to

a lesser extent. The custom CNN model produced suit

and rank accuracies of 90% and 68% respectively.

However, did much poorer in combined classification.

The final and most successful model achieved suit and

rank accuracies of 95% and 81%. However, even it

only arrived at a 77% total classification accuracy.

Despite this, each model provides a good baseline of

classification with understandable errors. Many

misclassifications confound similar ranks or suits of

the same color.

Figure 21: 3 of diamonds misclassified by transfer learning
as 8 of diamonds

Figure 22: King of clubs incorrectly classified by transfer
learning as king of spades

Figure 23: King of spades correctly classified by transfer
learning

Figure 24: 10 of clubs incorrectly classified as a spade using
SVM’s

Figure 25: 2 of clubs incorrectly classified as a 7 using SVM’s

Figure 26: Queen of clubs correctly classified as both clubs
and a queen using SVM’s

Figure 27: 2 of Hearts misclassified as a diamond using the
custom CNN.

Figure 28: 3 of clubs misclassified as an 8 using the custom
CNN.

Figure 29: 4 of Diamonds correctly classified by both the
custom CNNs.

Other errors resulted from greedy cropping, which

occurred infrequently enough in the training set to

not be covered in testing entirely. However, some

images still managed to be classified through greedy

crops.

Figure 30: Ace of spades correctly classified by transfer
learning

6 CONCLUSION AND FUTURE WORK

The models produced provided sufficient results to

justify their use in generalizable card classification

when corner images are given. However, insufficient

results from our image cropping R-CNN prevents the

models from being able to classify entire cards in

natural environments. Despite this, the outputs from

the R-CNN model still contain numerous features

which may be used for classification. A better

implementation, which utilizes multiple inputs from

the R-CNN might be successful in meshing the image

cropping and corner classification models.

There are many possible ways of improving card

classification. Improvements to Hough transforms

and masking could allow for better isolation of the

card making it easier for the model to classify cards in

different situations, such as occlusion and confusing

environments. Increasing the dataset through

augmentation or manually would also lead to

improvements in classifying cards as the model would

have more images for the 13 ranks it has to classify.

Template matching or object detection could be

implemented so that cards could be identified and

located in an image and could allow a program to

determine which cards are in hand and which are on

the table. A long-term outcome of further topic

exploration could be developing a suggestion bot for

card games like poker or blackjack using game playing

artificial intelligences. Finally, the system could be

implemented in a mobile application, that could allow

a user to determine best moves on the go.

7 KEY CHALLENGES AND LESSONS LEARNED

The final versions of each of our models underwent

numerous revisions amidst troubles, errors, and

incorrect assumptions. As is usual, these ranged from

the domain of data collection to the realm of

classification. Below are the most prominent of these

challenges and any valuable knowledge gained from

each.

7.1 DATASET ISSUES

The most prominent issue, spanning the totality of

the project, was the failure of our dataset to meet our

needs. This can best be broken down into a few key

issues.

The first and most crucial problem was the repeated

labeling and spelling errors. Numerous images were

either labeled incorrectly, or the label was correct but

misspelled. This required us to manually sift through

the entirety of our dataset to ensure that our

networks were not training on incorrect data. This

took numerous hours to correct and was caught later

into the project, resulting in large amounts of wasted

time with data issues. The most important takeaway

from this is to ensure the dataset is correct before

starting any other work, so that corrections can be

made, or another can be chosen.

Another problem which plagued the dataset was the

suboptimal organization of the data. From the

beginning, the only signifiers of an image’s class were

stored in .csv files. MATLAB’s image datastore took in

classes from files. At the point, our group decided to

detect rank and suit separately, this became a larger

problem, as both had to be parsed from this single

file. The solution to this was the complete

reorganization of the data into classification files by

hand.

The final issue our dataset faced was its limited size.

This became an issue particularly during support

vector machine training as often a single rank only

had a handful of data points to use. Other models in

similar domains had dataset sizes of 54,600 cards [4].

This helped those models to learn more precisely and

reduced the chance of overfitting. The solution

arrived on was using hand-taken images to

supplement the original dataset. In the future, it

would be wise to look for larger datasets, particularly

when training is to be done between numerous

classes.

7.2 IMAGE DATASTORE

As a result of the dataset issues our group

encountered early in the project, we required a

method of reading in classes from a .csv file. The .csv

file was looped through, and its values were added to

the image datastore used for the training and test

sets. This was done quickly and seemed to have few

drawbacks. However, due to type misclassification,

training functions refused to read in the label matrix

that the file had produced in the image datastore.

This caused numerous days of confusion, and as types

are not explicit in MATLAB, it was time consuming to

find.

7.3 HOUGH TRANSFORM

Our literature reviews noted that the Hough

transform was a useful algorithm for isolating cards

and their constituent parts. Further, it could be seen

to provide a straightforward method of image

rotation to ensure standard training inputs. This

prompted an exploration of the algorithm’s

applicability to the project. Two different models

were constructed to do this. One attempted to find

rectangles of varying size in the image which

resembled a card. This method failed due to its long

computation times and therefor its inability to scale

to even moderately sized datasets. The second

method detected the lines in the image before finding

two opposing lines which signified the edges of a

card. This was much faster and could use the power

of built in MATLAB functions. However, this failed at

providing the accuracy needed to train or test

classifiers. As a result, both functions were scrapped.

This example serves as a good instance of when to cut

your losses and move on. Numerous hours were

poured into developing the algorithm, which yielded

no impact on the result. As such, it illustrates that

moving past an idea is sometimes the best option

when nothing is providing results and improvements

are minor between revisions.

8 REFERENCES

[1] C. (. Zheng and R. Green, "Playing Card Recognition Using Rotational Invariant Template Matching," University

of Canterbury Department of Computer Science and Software Engineering, 2007.

[2] W.-Y. Chen and C.-H. Shung, "Robust Poker image recognition scheme in playing card machine using Hotelling

transform, DCT and ren-length techniques.," Digital Signal Processing, vol. 20, pp. 769-779, 2009.

[3] J. Pimentel and A. Bernardino, A Comparison of Methods for Detection and Recognition of Playing Cards,

Instituto de Sistemas e Robotica, Instituto Superior T ´ ecnico.

[4] M. Castillo, B. Goeing and J. Westell, "Computer Vision for Card Games," Stanford University, 2016.

[5] MathWorks, "Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN," [Online]. Available:

https://www.mathworks.com/help/vision/ug/getting-started-with-r-cnn-fast-r-cnn-and-faster-r-cnn.html.

[Accessed 19 August 2021].

[6] MathWorks, "Anchor Boxes for Object Detection," [Online]. Available:

https://www.mathworks.com/help/vision/ug/anchor-boxes-for-object-detection.html. [Accessed 19 August

2021].

9 APPENDIX

9.1 CUSTOM CNN ARCHITECTURES

Suit CNN

3 3x3 relu filter layers with 50x40x3 input

8 3x3 relu filter layer

8 3x3 relu filter layer

0.1 Dropout

32 3x3 filter relu layer

32 3x3 filter relu layer

0.1 Dropout

64 3x3 filter relu layer

64 3x3 filter relu layer

0.1 Dropout

128 3x3 relu filter layer

128 3x3 relu filter layer

128 3x3 relu filter layer

0.1 Dropout

256 3x3 relu filter layer

256 3x3 relu filter layer

256 3x3 relu filter layer

0.1 Dropout

512 3x3 relu filter layer

512 3x3 relu filter layer

512 3x3 relu filter layer

0.1 Dropout

flatten layer

500 neuron relu layer

500 neuron relu layer

0.1 Dropout

500 neuron relu layer

500 neuron relu layer

0.1 Dropout

500 neuron relu layer

0.1 Dropout

500 neuron relu layer

500 neuron relu layer

4 Softmax Layer output

Rank CNN

3 3x3 relu filter layers with 50x40x3 input

8 3x3 relu filter layer

8 3x3 relu filter layer

0.1 Dropout

16 3x3 relu filter layer

32 3x3 relu filter layer

0.1 Dropout

64 3x3 relu filter layer

0.1 Dropout

128 3x3 relu filter layer

128 3x3 relu filter layer

128 3x3 relu filter layer

0.1 Dropout

256 3x3 relu filter layer

256 3x3 relu filter layer

256 3x3 relu filter layer

0.1 Dropout

512 3x3 relu filter layers

512 3x3 relu filter layers

512 3x3 relu filter layers

0.1 Dropout

Flatten Layer

1000 neuron relu layer

13 Softmax Layer output

