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Abstract 

Image recognition shows numerous applications to 

detection of card ranks and suits. Our proposed 

model attempts to identify cards in natural 

environments through image processing and 

classification. To accomplish this, our model uses a 

region-based convolutional neural network (R-CNN) 

to crop important card identification regions from 

natural images containing cards. Then, one of three 

different classifiers identify the rank and suit of the 

card found. Our results proved promising in the 

identification of cards, with the highest of the three 

classification models producing an accuracy of 77%. 

However, full classification from natural images to 

single cards proved difficult as R-CNN crop outputs 

ranged in quality. As such, our report lends validity to 

the use of numerous models (SVM, CNN, and 

transfer) in card classification but warrants future 

research in the cropping of cards in natural 

environments to facilitate classification. 

1 INTRODUCTION 

The prevalence of playing cards in society is a 

continuity throughout the breadth of history. Their 

applicability to numerous games has leant them value 

spanning cultural context and language. However, 

this wide range of card applications – and the even 

wider range of artistic contexts in which cards are 

created – has led to many competing card companies 

and designs.  

Given this wide scope of cultural impact, there is 

sufficient background and reasoning to explore 

integration of playing cards with image recognition. 

Card recognition has the potential to span numerous 

applications, including uses in betting games such as 

poker and blackjack, identification of cards in venues 

such as casinos, or consumer novelty in 

entertainment applications. Additionally, numerous 

algorithms already hold the capability to perform well 

in similar games but are limited to digital applications. 

Image recognition of physical playing cards could help 

connect digital game-playing artificial intelligences 

with physical-world contexts. 

Playing cards present a complex challenge in the field 

of image recognition. Each card combines features to 

culminate in 52 classes of recognition inherent in 

each deck. Further, differing art between decks and 

brands make each card a potentially unique 

recognition task. Current research often uses singular 

or a small variety of decks for training and testing. 

This approach, while offering promising results on 

more common deck types, leaves out the breadth of 

art present in real world deck usage. To bridge the gap 

between current models and the real world, more 

generalizable classifiers are required. 

Our solution attempts to rectify this issue by 

providing an image recognition model that is 

designed with multiple deck styles in mind. To 

accomplish this, the model makes three crucial 

considerations: suit, rank, and training dataset 

quality. To identify suit and rank, three different 

models were constructed, a support vector machine 

(SVM) classifier, a custom convolutional neural 

network (CNN), and a transfer network model based 

on the image classifier AlexNet. The training dataset 

was the final component to aid in classification 

generalizability. Cards were selected from a variety of 

different contexts and styles. They contain 

backgrounds which range from none to natural with 

varying dimensions and scales. 



 

Figure 1: Queens found in the training dataset with varying 
features and styles. 

 

This breadth of training data ensures that the final 

model accounts for the desired range in inputs and 

outputs. For later models, modifications were made 

to the data to increase accuracy. Data was fed into a 

region-based convolutional neural network to crop 

images to the corners of cards. This helped decrease 

the impact of backgrounds and superfluous card 

designs. 

2 LITERATURE REVIEW 

Playing card detection has seen numerous attempts 

throughout the relevant literature. Among these, 

continuities of procedure have arisen which provide 

well recognized solutions to similar problems. 

However, some continuities have found great 

influence in our proposed solution more than others.  

Zheng and Green [1] propose Playing Card 

Recognition Using Rotational Invariant Template 

Matching. Their recognition model matched images 

with predesignated templates. While this 

methodology proved accurate for their uses, 

template matching was determined to limit 

generalization too greatly for our model and as such 

was not used. However, the model also used image 

cropping and rotation to ensure that only relevant 

image regions were used for classification. This 

served as valuable inspiration for the use of our 

model’s R-CNN for cropping. Further, it inspired 

investigation of image rotation before the topic was 

scrapped for feasibility reasons. Chen and Shung [2] 

also propose another method of image 

standardization, which uses the Hotelling Transform. 

However, this was not used in our model. 

Pimentel and Bernardino [3] in A Comparison of 

Methods for Detection and Recognition of Playing 

Cards propose two methods of image classification 

after image standardization. One proposed method 

uses a probability map of each rank and suit. This was 

matched similarly in our model during the SVM 

classification where the highest confidence was used 

to classify each rank and suit. 

Castillo, Goeing, and Westell [4] directly inspired our 

SVM research by noting the validity of multiclass 

support vector machine models. This was later found 

to be inferior in our model to numerous single class 

SVM models. 

3 PROCESS 

Several different methods were completed for 

creating a playing card classification system.  Each 

method had its own unique challenges and 

difficulties, as well as different setups. 

Acquiring correct labeling for each image proved to 
be difficult with our dataset. To obtain correct labels, 
both training and testing datasets were organized in 
2 separate ways, one for each classifier. The first was 
organized using 13 folders separated by rank. The 
same was done for suits. Both testing and training 
data was organized in this way. This allowed us to 
create labels for the cards based on the folder names 
as opposed to manually inspecting and renaming 
each card image file. 

3.1 REGION-BASED CONVOLUTIONAL NEURAL NETWORK 

Three R-CNNs were attempted on the original dataset 

after preprocessing the training dataset to be used in 

the SVMs and CNN transfer learning to determine the 

card suit and rank. The preprocessing phase consisted 

of labeling each corner of the six hundred sixty-four 

cards as a ‘corner’ as shown in Figure 2. The images 

are then resized to 227 x 227 pixels for the CNN to 

handle. 



 

Figure 2: Ground truth corner labels of the card. 

 

Once the preprocessing phase was complete, the 

dataset was run through an R-CNN with SqueezeNet, 

a Fast R-CNN with ResNet50, and a Faster R-CNN with 

ResNet50. 

For the R-CNN transfer learning with SqueezeNet, the 

last two layers were replaced with a new fully 

connected layer and a new classification layer. A 

typical transfer learning network is shown in Figure 3. 

 

 

Figure 3: Typical transfer learning network model [5]. 

 

In the Fast R-CNN implementation of ResNet50, the 

activation_40_relu was chosen as the feature 

extraction layer and an ROI max pooling layer was 

inserted after the feature extraction layer along with 

an ROI input layer, as shown in Figure 4 below. The 

last three modified layers from ResNet50 transfer 

learning were also included with a new fully 

connected layer and a box regression layer [5]. Figure 

5 shows a typical Fast R-CNN network modification. 

The way the Fast R-CNN works is that the algorithm 

attempts to tighten its prediction of the proposed 

region of interest, the bounding boxes from the Fast 

R-CNN’s prediction, to accurately classify the corners 

of the cards using the intersection over union metric 

shown in Equation 1. 

                                      
𝑎𝑟𝑒𝑎(𝐴∩𝐵)

𝑎𝑟𝑒𝑎(𝐴∪𝐵)
                   (Equation 1) 

 

 

Figure 4: The ResNet50 network showing the roiPool and 
roiInput after the activation_40_relu layer. 

 

 

Figure 5: Typical Fast R-CNN layer graph [5]. 

 

The third approach was the Faster R-CNN with 

ResNet50. This network graph has a region proposal 

network inserted after the feature extraction layer 

and before the ROI max pooling layer. A typical Faster 

R-CNN layer graph is shown in Figure 6. 

The way the Faster R-CNN works is that the algorithm 

attempts to predict the bounding boxes on its own in 

the region proposal network using anchor boxes [5]. 

Instead of having a sliding window to find the ground 

truth bounding boxes, a certain number of static 

bounding boxes are added onto the image to locate 

the ground truth bounding boxes [6]. An anchor box 

size of twenty was used for the Faster R-CNN because 

of its consistent high IoU metric and Figure 6 shows 

one example of the anchor box to IoU (intersection 

over union) plot. 



 

Figure 6: Mean IoU to size of anchor box. 

 

 

Figure 7: Typical Faster R-CNN layer graph [5]. 

 

The transfer learning R-CNN with SqueezeNet 

resulted in a misclassification of the corner bounding 

boxes, shown below in Figure 7, but had a better 

accuracy at predicting the corner labels than the Fast 

and Faster R-CNNs and in less time. The Faster R-CNN 

implementation took five hours to fully train with ten 

epochs and the classification of the corner was 

corrupted by the automatic ROI proposal network. 

Not only did the Fast R-CNN and the Faster R-CNN not 

detect the bounding boxes in the correct locations 

but they proposed bounding boxes that were 

miniscule in size compared to the ground truth 

bounding boxes. 

Even though the proposed corners by the SqueezeNet 

algorithm were riddled with false positives like the 

banner lettering below in the testing dataset, it was 

still possible to determine the suit and rank of the 

entire card from the other images 

 

Figure 8: Top left is the original image, and the other 
images are proposed corners by the SqueezeNet transfer 
learning model. Misclassification of the bottom banner in 
the image as a corner of the card is shown in the bottom 
left. 

 

To predict the testing dataset rank and suit, the 

cropped ground truth images were used on the 

following algorithms to train and test the algorithms 

on. 

3.2 SVM 

The SVM method for playing card classification used 

feature extraction from a CNN, and then passed the 

features into the SVM.  AlexNet was chosen as the 

CNN for feature extraction because it is a built-in CNN 

in MATLAB and because of previous experience using 

it. Features were extracted from the last fully 

connected layer (‘fc7’) in AlexNet. 

A multi-class SVM was originally used to classify the 

data.  Images and corresponding labels for all 52 

playing cards were passed into AlexNet. Features 

were extracted and then passed into MATLAB’s 

fitcecoc() multi-class SVM function for training.  After 

the multi-class SVM was trained, it was used to 

classify the data.  It was found that using a multi-class 

SVM to distinguish between 52 different classes 

achieved a very low accuracy (only around 8%), so the 

classification process was changed to improve the 

model. 

The classification process was broken apart such that 

only a binary SVM (MATLAB’s fitcsvm() function) was 

needed.  To achieve this, the model was broken apart 

to classify the suit and rank separately.  First, the 



models tested for each suit versus non-suit, then each 

rank versus non-rank.  This resulted in 17 SVM’s run 

back-to-back on the test images (4 SVM’s for each 

suit, and 13 SVM’s for each rank, using the process 

shown in Figure 9). A score was recorded for each 

rank and suit SVM.  The suit and rank SVMs with the 

greatest scores classified the suit and rank for the 

card.  

 

 

Figure 9: SVM Flowchart 

 

The training data for each SVM was divided 

differently for the suit and rank classifiers to make 

sure each SVM was properly trained.  For the suit 

classifiers, the training set consisted of the entirety of 

the available suit images and an equal amount of non-

suit images, divided evenly amongst each class.  The 

training images passed into the rank detector were 

completed the same way, except the non-rank images 

were broken apart into an equal number of images 

from all 12 other ranks. 

Each SVM used two hyperparameters – the box 

constraint and kernel scale.  These were optimized 

using MATLAB’s fitcsvm() ‘bayesopt’ optimizer, as 

well as ‘auto’ ‘OptimizeHyperparameters’ options.  

The best estimated values for Box Constraint and 

Kernel Scale were then passed into the fitting 

function. 

3.3 CNN 

Similar to how the previous method used to separate 

suit and rank classifiers, creation of two custom CNNs 

was another possible solution to classify the suit and 

rank of a card. Initially the first CNNs used the entire 

image of a card, however, to increase performance 

we would use cropped images that would display only 

the rank and suit of the card. Those cropped images 

were then downscaled. The combination of using a 

crop and downscaling to a 50 x 40 image prevented 

out of memory errors while training, allowed for 

faster training of the model, and a higher accuracy 

over each set. Using a CNN allows for filters in the 

convolutional layers of the model to collect features 

of the image automatically. The features get passed 

to the fully connected layers of the model before 

outputting a softmax classification.  

In the final and most successful iteration of the 

custom suit model, The Gambler Suit V4, the 

architecture was based off a CNN designed for 

determining whether or not a patient qualifies for 

LASICK eye surgery and was modified to fit the needs 

of suit classification. The suit classifier takes in a 

50x40 image, consists of 36 layers when including 

dropout, and outputs a classification of the card’s suit 

(Clubs, Diamonds, Hearts, Spades). Further details of 

the model are shown in the appendix.   

The architecture used for the rank classifier was 

similarly designed and consisted of 24 layers, and 

outputs a rank for the card. Further details can be 

found in the appendix.  

3.4 TRANSFER LEARNING 

Transfer learning reuses the feature extraction layers 

of a prebuilt CNN but replaces the final few layers that 

classify images. This saves an immense amount of 

time on training and can result in higher accuracy as 

prebuilt networks are often trained on millions of 

images. For this project, AlexNet was used as it was 

easy to work with and trained quickly. AlexNet is a 

CNN consisting of 25 layers, the last 3 of which were 

replaced for this project. Replacing the final 3 layers 



allowed AlexNet to classify cards instead of the 

output it was originally trained for. If the features 

detected in AlexNet’s original training data were 

similar enough to the relevant features distinguishing 

playing cards, a high accuracy could be obtained. 

The final 3 layers were replaced with a fully connected 

layer, a softmax layer, and a classification layer. In 

addition, the initial learning rates were set to a low 

value, but a higher learning rate was used for the final 

fully connected layer. Using these learning rates 

allowed for quicker training as less epochs were 

needed. Essentially, AlexNet did all the feature 

extraction with its prebuilt layers, then classified with 

the newly added layers. 

Much like the other 2 methods, transfer learning was 

split into separate classifiers; one for ranks and one 

for suits. This increased accuracy as it dropped the 

number of classes from 52 down to 13 and 4 for the 

rank and suit classifiers respectively. The resulting 

outputs from each classifier were then concatenated 

to create the final classification for each card.  

AlexNet requires a 227x227x3 input to run, meaning 

all images in the dataset had to be rescaled to a size 

of 227x227 with 3 colorbands (RGB). During the 

resizing, any grayscale images were also converted to 

RGB color space by duplicating their values across 

each color band. This was done for all training and 

testing data.  

4 EXPERIMENTAL SETUP AND RESULTS 

4.1 SVM 

Using the original card data, the multi-class SVM did 

poorly, only resulting in around an 8% accuracy.  The 

original data was also passed into the refined SVM 

method (using sequential SVM’s), and performed 

much better, although still poorly.  In Table 1 below, 

the accuracy for detecting each suit versus non-suit is 

shown.  Overall, the suit detector does very well.  In 

Table 2 below, the accuracy for detecting each rank 

versus non-rank is shown.  Most ranks perform well. 

However, the overall rank accuracy is brought down 

by ranks with a lower performance.  For the original 

data, the SVM method resulted in a 23.47% overall 

accuracy. 

Table 1: Accuracy of Suit Classification Using SVM 

Method 

Suits Accuracy (%) 

Clubs 86.73 
Spades 80.61 
Hearts 78.57 

Diamonds 79.59 
Overall Suits 70.41 

 

Table 2: Accuracy of Rank Classification Using SVM 

Method 

Ranks Accuracy (%) 

Aces 77.55 

2’s 81.63 

3’s 69.39 

4’s 72.45 

5’s 65.31 

6’s 90.82 

7’s 66.33 

8’s 70.41 

9’s 60.20 

10’s 82.65 

J’s 71.43 

Q’s 79.59 

K’s 71.43 

Overall Ranks 30.61 

It was found that the SVM accuracy much worse than 

the Transfer Learning and custom CNN, so the 

cropped images were not ever classified using the 

SVM. 

4.2 CNN 

A decision was made to first develop a custom model 

for classifying the suit of the card. However, the 

validation set results from the initial suit classifiers 

were not satisfactory and ranged from ~21% - ~27% 

depending on the model and the hyperparameters. 

The original data set contained 539 training images 

and 100 testing images while the cropped image set 

contained roughly 1400 training images, 100 of which 

were used for testing. 20% of the training images for 

each set were used for validation. Using cropped 

images increased the training and test performance. 

Training was much faster since it had smaller input 

images to train on, and accuracy for each set 

increased as well. To further increase performance of 

the suit classifier, images and input shape of the 



model were downscaled. This too increased training 

speed and improved accuracy.  

Finally, the hyperparameters used for training the 

most successful model were an Adam optimizer with 

a learning rate of 0.0001, 400 epochs, and loss 

calculated using sparse categorical cross-entropy. 

Batch size for training was not used but could have 

improved training speed for the suit model. Two 

models were tested, one with the lowest validation 

loss and the other from the last epoch. Both achieved 

an accuracy of 90% on the test set, so the one with 

the lowest validation loss was selected as our final 

suit model. 

Once the suit model was complete, we then created 

a rank model. To achieve success for this part of the 

problem, many tweaks to the hyperparameters were 

needed. For this model, batches were set to 1000. 

The other hyperparameters used for training were an 

Adam optimizer with learning rate of 0.0001, an 

epoch count of 600, and sparse categorical cross-

entropy used for loss. Two models were once again 

tested, one with the lowest validation loss and one 

from the last epoch. The test accuracy of the lowest 

validation loss model was lower than the test 

accuracy of the final epoch model. The lowest 

validation loss model had a test accuracy of 64% while 

the final epoch model surpassed it with a test 

accuracy of 68%. 

With the suit and rank models, there is a suit test 

accuracy of 90% and rank test accuracy of 68% (Table 

3), while the rank accuracy is lower than the suit 

model. 

Table 3: Rank And Suit Test Accuracy Of Custom CNNs 

Model Accuracy (%) Loss 

Suit 90 1.1068 
Rank 68 4.7762 

 

The custom rank CNN still has room for improvement 

as an accuracy of at least 90% is desired. While the 

customs CNNs were more accurate than their 

respective SVMs, the transfer learning models 

outperformed both. 

4.3 TRANSFER LEARNING 

The first dataset used for transfer learning was the 

original unchanged images. The only change the 

images underwent was rescaling for input into 

AlexNet. 30% of the training set was used for 

validation when training both the suit and the rank 

CNNs. A minibatch size of 20, validation patience of 

10, and initial learning rate of 1x10-4 were used when 

training the suit network. In addition, the maximum 

allowed epochs were set to 6. When training the rank 

network, the same options were applied, but the 

maximum allowed epochs were set to 7.  

The resulting accuracies were less than stellar. The 

suit classifier was roughly 65% accurate while the 

rank classifier was about 51% accurate for a total 

combined accuracy of 33.67%. 

Using the cropped dataset vastly improved results of 

both classifiers. For the cropped dataset, 200 of the 

1450 test images were partitioned to create the test 

set and 30% of the remaining training data was used 

as a validation set. The suit classifier used a minibatch 

size of 100, validation patience of 10, initial learning 

rate of 1x10-4, and max epochs of 4. The rank classifier 

used a minibatch size of 20, but all the other options 

stayed the same. These resulted in much higher 

accuracies. The accuracies for all models and data 

used are summarized in Table 4. Figures from the 

training process and results are shown as well in 

figures 10 through 17.  

 

Table 4: Transfer Learning Accuracies on Test Set.  

 Suit 
Accuracy 

Rank 
Accuracy 

Total 
Accuracy 

Original 
Data 

64% 51% 33.5% 

Cropped 
Data 

95% 81% 77% 



 

Figure 10: Suit transfer learning training results for original data 

 

 

Figure 11: Rank transfer learning training results for original data 



 

Figure 12: Suit transfer learning  training results for cropped data 

 

 

Figure 13: Rank transfer learning  training results for cropped data 

 

 

 

 

 



 

Figure 14: Suit transfer learning confusion matrix for 
original data 

 

Figure 15: Rank transfer learning confusion matrix for 
original data 

 

Figure 16: Suit transfer learning confusion matrix for 
cropped data 

 

Figure 17: Rank transfer learning confusion matrix for 
cropped data 

5 DISCUSSION 

Our models produced admirable results individually, 

which lends credibility to the application of each of 

their algorithms to the task of playing card 

recognition. However, taken together, the model 

produced is best described as volatile.  

To discuss this volatility, it is most important to look 

at the classifier input, produced using the image 

cropping R-CNN.  

 

 

Figure 18: Original image and detected cropping region. 

The original image in Figure 18 was completely 

misclassified as a corner. This was a problem in the 

SqueezeNet transfer learning R-CNN’s feature 

extraction layer and the training images. In Figure 19, 

the last convolutional layer is shown indicating that 

the features extracted from the convolutional layer 

were not enough to classify a card’s corner. Because 

the backgrounds vary among the card images, the 

detector is unable to determine the corners. Figure 20 

shows the center of a card being detected as a card 

corner as well. 



 

Figure 19: Final convolutional layer of the SqueezeNet 
transfer learning network. 

 

Figure 20: Test dataset image of an entire image being 
misclassified. 

When images are cropped correctly, all three models 

perform well in their classification of individual 

features yet vary in their quality of combined feature 

classification. The support vector machine model is 

the clearest example of this. Individual rank classifiers 

ranged in accuracy from 60% to 90%. However, 

overall rank classification was only 30% accurate. This 

is likely due in fact to the number of categories being 

classified. The likelihood that any classifier results in a 

false positive is considerably higher than any single 

classifier. Should that false positive receive a higher 

score than the correct class, the image is classified 

incorrectly. 

While this issue was amplified by the numerous 

classifiers required in the support vector machine 

model, it remained a constant between all models to 

a lesser extent. The custom CNN model produced suit 

and rank accuracies of 90% and 68% respectively. 

However, did much poorer in combined classification. 

The final and most successful model achieved suit and 

rank accuracies of 95% and 81%. However, even it 

only arrived at a 77% total classification accuracy. 

Despite this, each model provides a good baseline of 

classification with understandable errors. Many 

misclassifications confound similar ranks or suits of 

the same color. 

 

Figure 21: 3 of diamonds misclassified by transfer learning 
as 8 of diamonds 

 

Figure 22: King of clubs incorrectly classified by transfer 
learning as king of spades 

 

Figure 23: King of spades correctly classified by transfer 
learning 

 

Figure 24: 10 of clubs incorrectly classified as a spade using 
SVM’s 



 

Figure 25: 2 of clubs incorrectly classified as a 7 using SVM’s 

 

Figure 26: Queen of clubs correctly classified as both clubs 
and a queen using SVM’s 

 

Figure 27: 2 of Hearts misclassified as a diamond using the 
custom CNN. 

 

Figure 28: 3 of clubs misclassified as an 8 using the custom 
CNN. 

 

Figure 29: 4 of Diamonds correctly classified by both the 
custom CNNs. 

Other errors resulted from greedy cropping, which 

occurred infrequently enough in the training set to 

not be covered in testing entirely. However, some 

images still managed to be classified through greedy 

crops. 

 

Figure 30: Ace of spades correctly classified by transfer 
learning  

6 CONCLUSION AND FUTURE WORK 

The models produced provided sufficient results to 

justify their use in generalizable card classification 

when corner images are given. However, insufficient 

results from our image cropping R-CNN prevents the 

models from being able to classify entire cards in 

natural environments. Despite this, the outputs from 

the R-CNN model still contain numerous features 

which may be used for classification. A better 

implementation, which utilizes multiple inputs from 

the R-CNN might be successful in meshing the image 

cropping and corner classification models. 

There are many possible ways of improving card 

classification. Improvements to Hough transforms 

and masking could allow for better isolation of the 



card making it easier for the model to classify cards in 

different situations, such as occlusion and confusing 

environments. Increasing the dataset through 

augmentation or manually would also lead to 

improvements in classifying cards as the model would 

have more images for the 13 ranks it has to classify. 

Template matching or object detection could be 

implemented so that cards could be identified and 

located in an image and could allow a program to 

determine which cards are in hand and which are on 

the table. A long-term outcome of further topic 

exploration could be developing a suggestion bot for 

card games like poker or blackjack using game playing 

artificial intelligences. Finally, the system could be 

implemented in a mobile application, that could allow 

a user to determine best moves on the go. 

7 KEY CHALLENGES AND LESSONS LEARNED 

The final versions of each of our models underwent 

numerous revisions amidst troubles, errors, and 

incorrect assumptions. As is usual, these ranged from 

the domain of data collection to the realm of 

classification. Below are the most prominent of these 

challenges and any valuable knowledge gained from 

each. 

7.1 DATASET ISSUES 

The most prominent issue, spanning the totality of 

the project, was the failure of our dataset to meet our 

needs. This can best be broken down into a few key 

issues. 

The first and most crucial problem was the repeated 

labeling and spelling errors. Numerous images were 

either labeled incorrectly, or the label was correct but 

misspelled. This required us to manually sift through 

the entirety of our dataset to ensure that our 

networks were not training on incorrect data. This 

took numerous hours to correct and was caught later 

into the project, resulting in large amounts of wasted 

time with data issues. The most important takeaway 

from this is to ensure the dataset is correct before 

starting any other work, so that corrections can be 

made, or another can be chosen. 

Another problem which plagued the dataset was the 

suboptimal organization of the data. From the 

beginning, the only signifiers of an image’s class were 

stored in .csv files. MATLAB’s image datastore took in 

classes from files. At the point, our group decided to 

detect rank and suit separately, this became a larger 

problem, as both had to be parsed from this single 

file. The solution to this was the complete 

reorganization of the data into classification files by 

hand. 

The final issue our dataset faced was its limited size. 

This became an issue particularly during support 

vector machine training as often a single rank only 

had a handful of data points to use. Other models in 

similar domains had dataset sizes of 54,600 cards [4]. 

This helped those models to learn more precisely and 

reduced the chance of overfitting. The solution 

arrived on was using hand-taken images to 

supplement the original dataset. In the future, it 

would be wise to look for larger datasets, particularly 

when training is to be done between numerous 

classes. 

7.2 IMAGE DATASTORE 

As a result of the dataset issues our group 

encountered early in the project, we required a 

method of reading in classes from a .csv file. The .csv 

file was looped through, and its values were added to 

the image datastore used for the training and test 

sets. This was done quickly and seemed to have few 

drawbacks. However, due to type misclassification, 

training functions refused to read in the label matrix 

that the file had produced in the image datastore. 

This caused numerous days of confusion, and as types 

are not explicit in MATLAB, it was time consuming to 

find. 

7.3 HOUGH TRANSFORM 

Our literature reviews noted that the Hough 

transform was a useful algorithm for isolating cards 

and their constituent parts. Further, it could be seen 

to provide a straightforward method of image 

rotation to ensure standard training inputs. This 

prompted an exploration of the algorithm’s 

applicability to the project. Two different models 

were constructed to do this. One attempted to find 

rectangles of varying size in the image which 

resembled a card. This method failed due to its long 

computation times and therefor its inability to scale 

to even moderately sized datasets. The second 



method detected the lines in the image before finding 

two opposing lines which signified the edges of a 

card. This was much faster and could use the power 

of built in MATLAB functions. However, this failed at 

providing the accuracy needed to train or test 

classifiers. As a result, both functions were scrapped. 

This example serves as a good instance of when to cut 

your losses and move on. Numerous hours were 

poured into developing the algorithm, which yielded 

no impact on the result. As such, it illustrates that 

moving past an idea is sometimes the best option 

when nothing is providing results and improvements 

are minor between revisions.
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9 APPENDIX 

9.1 CUSTOM CNN ARCHITECTURES 

Suit CNN 

3 3x3 relu filter layers with 50x40x3 input 

8 3x3 relu filter layer 

8 3x3 relu filter layer 

0.1 Dropout 

32 3x3 filter relu layer 

32 3x3 filter relu layer 

0.1 Dropout 

64 3x3 filter relu layer 

64 3x3 filter relu layer 

0.1 Dropout 

128 3x3 relu filter layer 

128 3x3 relu filter layer 

128 3x3 relu filter layer 

0.1 Dropout 

256 3x3 relu filter layer 

256 3x3 relu filter layer 

256 3x3 relu filter layer 

0.1 Dropout 



512 3x3 relu filter layer 

512 3x3 relu filter layer 

512 3x3 relu filter layer 

0.1 Dropout 

flatten layer 

500 neuron relu layer 

500 neuron relu layer 

0.1 Dropout 

500 neuron relu layer 

500 neuron relu layer 

0.1 Dropout 

500 neuron relu layer 

0.1 Dropout 

500 neuron relu layer 

500 neuron relu layer 

4 Softmax Layer output 

 

Rank CNN 

3 3x3 relu filter layers with 50x40x3 input 

8 3x3 relu filter layer 

8 3x3 relu filter layer 

0.1 Dropout 

16 3x3 relu filter layer 

32 3x3 relu filter layer 

0.1 Dropout 

64 3x3 relu filter layer 

0.1 Dropout 

128 3x3 relu filter layer 

128 3x3 relu filter layer 

128 3x3 relu filter layer 

0.1 Dropout 

256 3x3 relu filter layer 

256 3x3 relu filter layer 

256 3x3 relu filter layer 

0.1 Dropout 

512 3x3 relu filter layers 

512 3x3 relu filter layers 

512 3x3 relu filter layers 

0.1 Dropout 

Flatten Layer 

1000 neuron relu layer 

13 Softmax Layer output 

 


