

1

SUNSET DETECTOR

Chirag Sirigere, Connie Zhu

CSSE463 Image Recognition

27 July 2021

ABSTRACT

Classifying an image as a sunset or not using an SVM

is quite difficult because the right kernel scale, box

constraint, and threshold values must be chosen. This

project entails converting 3200 different RGB images

(1600 from the train, 1000 from the test, and 600 from

the validation datasets) to LST color space,

segmenting the images into 49 sections and gathering

the mean and standard deviation of each segment of

each LST color band. The features (mean and standard

deviation) are then standardized to a scale of 0 to 1 and

processed through an SVM based on the train dataset

to determine if the test dataset contains sunsets (+1) or

not (-1) using a correctly fitted ROC curve value from

the threshold values. The baseline LST-SVM has an

accuracy of 89.6% on the test dataset but is overfitted

based on the validation dataset. In a second part of the

project, two CNNs are used to classify the images, one

from squeezenet for transfer learning and one from

scratch in Keras. A few observations were made in this

project: Both CNNs performed better than the LST-

SVM with accuracies of 95% and marginal FPR

versus TPR ROC curves (nearly 0:0.9). The

squeezenet CNN, however, provided a more stable

validation loss function than the from-scratch Keras

CNN.

1. INTRODUCTION

This project is a continuation of Matthew Boutell’s

research [1]. With the rapid growth of digital image

data, it has become an increasingly urgent need for

computers to automatically understand images. As an

important research topic of understanding the image,

image classification and recognition (mainly scene

classification) has received attention. Image

classification has a wide range of applications in many

fields of computer vision, such as content-based image

retrieval, remote sensing image analysis, or video

surveillance. After decades of development, although

many encouraging results have been achieved in

image classification, it is still a very challenging

problem due to the complexity of the problem itself.

Image classification is widely used in content-based

image retrieval. The purpose of content-based image

retrieval is to search in the image database and find the

corresponding image that meets the query conditions

based on the content information or the specified

query criteria under the premise of a given query

image.

Content-based image retrieval refers to the query

condition itself is an image, or a description of the

image content. The indexing method is to extract the

underlying features, and then calculate and compare

the distance between these features and the query

condition to determine how similar the two pictures

are.

Similar to the content-based image retrieval system,

we detect sunsets by extracting features from each

sunset image and putting those features into an SVM

to calculate the distance between the features of

different images to predict whether an image can be

classified as sunset. We also run two different CNNs

on the raw RGB images.

More applications of this method would be classifying

flowers in images or objects soaring through the sky,

and these tasks are not easy to accomplish because any

small deviation in the color spaces of the segmented

images or the SVM model will make the classifier

worse. Everything from the color space to the RBF

kernel scale needs to be taken into consideration to

make the perfect model to predict a sunset.

Having learned how to visualize and model a two-

dimensional dataset with an SVM in this image

recognition class, modeling a multidimensional

dataset (d > 3) becomes difficult because it is hard to

visualize the data. Even with a matrix of multivariate

plots, it is time consuming and impossible to visualize

294 features.

Our task is to recognize and classify sunset images

from the website http://sunset.csse.rose-hulman.edu

with a zipped file of images. Figure 1 shows an image

of a sunset from the train dataset with warm colors in

the sky, dark colors on the ground, and a large horizon

http://sunset.csse.rose-hulman.edu/

2

with no interfering objects in the foreground. Figure 2

shows an image of a non-sunset from the train dataset

with a bridge as the foreground and no warm, natural

colors in the sky that could indicate a setting sun.

Figure 1: An image of a sunset.

Figure 2: An image of a non-sunset.

2. PROCESS

By converting the images from RGB to LST space, we

can extract the mean and standard deviation of each

band of a segmented image to be passed through an

LST-SVM. A few different preprocessing approaches

were taken on the CNN classifier.

The unzipped folder has three subfolders titled train,

test, and validate and each of these folders has two

folders with non-sunset images and sunset images.

The number of non-sunset and sunset images in the

train, test, and validate sets are 800, 500, and 300,

each, giving a total of 1600, 1000, and 600 images in

the train, test, and validate datasets, respectively.

2a. LST-SVM Preprocessing

We first converted the RGB images to LST space and

divided each image into 49 regions using a 7 x 7 grid.

Provided are the RGB to LST color space conversion

equations (Equations 1 to 3):

𝐿 = 𝑅 + 𝐺 + 𝐵 (1)

𝑆 = 𝑅 – 𝐵 (2)

𝑇 = 𝑅 – 2𝐺 + 𝐵 (3)

The problem with splitting an image into a 7 x 7 grid

was that some images had uneven dimensions. The

solution was to remove the last row or column

depending on the mod operator of the row or column

and the block size of 7. If either the mod of the row or

the column and the block size of 7 resulted in 0, the

end index of the dimension would be removed.

Removing the last index of a dimension is fine because

a single row or column would not affect the entire

feature significantly. Also, the images have enough

pixels and information at the ends that a one-pixel

continuation of a dimension is negligible. Shown in

Figure 3 is an example of a 7 x 7 segmented image of

the bridge from Figure 2.

Figure 3: The LST space image of the bridge from

Figure 2.

We then computed the mean and standard deviation of

each LST color band. This gives us 294 features for 49

regions x 3 bands x 2 (mean and variance). The 1600

sunset and non-sunset images from the train dataset

were combined with the 1000 sunset and non-sunset

images from the test dataset giving a 2600 row by 294

column feature matrix.

Theoretically, the ranges of values of the LST space

are L: [0, 765], S: [-255, 255], T: [-510, 510]. Since

the values have different weights, the matrix was then

3

normalized between 0 and 1 based on the 0-1 feature

normalization method provided by Equation 4:

(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑉𝑎𝑙𝑢𝑒) / 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑉𝑎𝑙𝑢𝑒 (4)

The 2600-row feature matrix is then split back into the

1600-row train and 1000-row test feature matrices.

The train feature matrix is passed through an SVM to

determine the best kernel scale and box constraint

values that output the lowest false positive rate and the

highest accuracy and true positive rate on the

validation dataset. The best kernel scale and box

constraint values were set to be used on the test dataset

with a variable threshold value. Again, the best

threshold value that outputted the lowest false positive

rate and the highest accuracy and true positive rate was

considered.

2b. CNN Preprocessing

Two different processes were taken by each teammate:

Chirag Sirigere used transfer learning while Connie

Zhu used a CNN from scratch in Keras.

The images were not converted to any color space

from their original RGB color bands but were rescaled

to 227 x 227 pixels and were either randomly

disoriented or not, to be inputted to the squeezenet

network skeleton for transfer learning.

The plan for transfer learning was to modify the last

convolution layer and the classification output layer

and do the following experiments:

1. Run with all layers frozen up to the last

convolution layer and 10 mini batches with a

maximum of 6 epochs.

2. Run with all layers frozen up to the last

convolution layer and 20 mini batches with a

maximum of 6 epochs.

3. Run with all layers unfrozen, having the

algorithm relearn every weight with 20 mini

batches, with a maximum of 6 epochs and

disoriented input images to remove the sunset

and clouds on top.

4. Run experiment 3 but with 10 epochs instead

of 6 epochs.

For the CNN made in Keras, the images were

normalized from [0, 255] to [0, 1] and the images were

randomly disoriented.

3. CLASSIFICATION

3a. SVM Classifier

Support Vector Machine (SVM) is a supervised

learning model which analyzes and classifies data.

Given a set of training datas, each training data is pre-

labeled as belonging to one or the other of the two

categories. Then, the SVM builds a model that assigns

new data to one of the two categories. The SVM model

puts the data as points in space so that the mapping

makes the data of individual categories separated by

the widest possible interval, the margin. This margin

is a line or nonlinear function plotted in the space that

contains support vectors. Support vectors are points

that keep the margin from being too distanced. The

SVM maps the new data to the same space and predicts

the category they belong to, based on which side they

fall on. Using Equation 5 for the Radial-Basis

Function (RBF),

𝐾(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝(−
||𝑥−𝑥𝑖||

2

2𝜎2) (5)

the hyperparameter, σ, controls how fast the equation

tapers off, in other words, the width of the Gaussian

curve.

3b. CNN Classifier

Convolutional Neural Networks are a type of

feedforward neural network generally composed of

these types of layers: the input layer, a convolutional

layer, a ReLU layer, a pooling layer, a fully connected

classification layer, and a SoftMax function layer.

These layers not only classify an image or signal, but

they also learn features in the image or signal, which

is what makes CNNs useful. In that order, the

individual layers have the following purposes:

1. The input layer is an entire dataset of images

or signals, all rescaled to fit into the neural

network architecture.

2. The convolutional layer usually is a 3 x 3

filter with tens of convolution filters that take

each image and learn the edges and color

gradients of the image.

3. The ReLU layer is a nonlinear transfer

function that changes the value of the input to

a new value based on Equation 6 below.

𝑔(𝑥) = 𝑚𝑎𝑥(𝑥, 0) (6)

4. The pooling layer down samples the

number of data points from a previous

4

layer by applying a striding function that

captures the maximum or average value

in each segment of the previous layer.

Layers 2, 3, and 4 are often grouped into the

feature learning subset of layers since they learn

and determine the different features in the image.

5. The fully-connected classification layer

is a neural network of neurons classifying

the various outputs of the previous

layers.

6. The SoftMax function normalizes the

outputs of the fully-connected

classification layer to the range [0, 1]

given by Equation 7 below.

𝑠(𝑥𝑖) =
𝑒𝑥𝑝(𝑥𝑖)

∑ 𝑒𝑥𝑝(𝑥𝑘)𝑑
𝑘=1

 (5)

4. EXPERIMENTAL SETUP

Originally, the non sunset and sunset images were

taken from the photo sharing website Flickr. At least

2000 sunset images were taken from the website:

https://www.flickr.com/groups/sunsetcentral/pool/

Another approximately 2000 non sunset images were

selected from the following website:

https://www.flickr.com/groups/photography-club-of-

flickr/pool/. For the training dataset, 800 images for

each sunset and non-sunset were taken, along with 500

images for each sunset and non-sunset in the testing

dataset. For the validation dataset, 300 sunset images

and 300 non sunset images are selected. Each RGB

image has dimensions ranging from 300 pixels to 650

pixels with a resolution of 96 dpi.

5. RESULTS

5a. LST-SVM Results

There were two ways to determine the best SVM

kernel scale and box constraint values: automatically

and manually optimizing for k and bc.

For the LST-SVM on the validation set, two for loops

were used to determine each combination of kernel

scale value from 1 to 10 and box constraint value from

1 to 10. Shown in Table 1 of the Appendix, we noticed

a jump in nearly twice the true positive rate between

the two bolded rows resulting in the need for another

iteration of different numbers.

Using the ‘OptimizeHyperparameters’ option of

‘auto’, we were able to find the second-best kernel

scale value and box constraint value of 2.8 and 2.5,

respectively. The accuracy of the SVM on the

validation set with kernel scale of 2.8 and box

constraint of 2.5 achieved 84% accuracy with a false

positive rate of 0.293 and a near perfect true positive

rate of 0.97. The problem with this was the relatively

higher FPR compared to a kernel scale and box

constraint value of 2 and 1, respectively. Figure 33 in

the Appendix shows the iterations of kernel scale

values and box constraint values.

This called for a further fine tuning of the hyper

parameters. Using the two for loops, our objective was

to keep the TPR and accuracy above 80% while

keeping FPR below 20% because if the accuracy were

less than 80%, say 75%, one would be better off

randomly guessing if an image has a sunset or not with

50% accuracy. This was achieved with the kernel scale

value of 1.4 and 1, shown in Table 2 of the Appendix.

One downside to this is that the ratio of support vectors

to the number of observations in the train dataset is

nearly 0.7, possibly overfitting the validation dataset

compared to the other hyperparameters with ratios of

nearly 0.4.

After tuning the hyperparameters, the LST-SVM was

run on the test dataset with the kernel scale and box

constraint values of 1.4 and 1. Figure 4 shows the ROC

curve of the test set with different decision threshold

values. From the indicated accuracy, 89.6% at a

threshold value of 0, the train dataset has overfit the

test dataset.

Figure 4: The ROC curve of the test dataset.

https://www.flickr.com/groups/sunsetcentral/pool/
https://www.flickr.com/groups/photography-club-of-flickr/pool/
https://www.flickr.com/groups/photography-club-of-flickr/pool/

5

5b. CNN Results

The transfer learning progress graphs of accuracy and

loss can be seen in the Appendix. The following

figures show the ROC curve of the various test dataset

outputs by varying the threshold between 0 and 1.

Figure 5: ROC curve for Section 2.3.1. Its respective

transfer learning progress graph of accuracy and loss

can be seen in Figure 29 of the Appendix.

Figure 6: ROC curve for Section 2.3.2. Its respective

transfer learning progress graph of accuracy and loss

can be seen in Figure 30 of the Appendix.

Figure 7: ROC curve for Section 2.3.3. Its respective

transfer learning progress graph of accuracy and loss

can be seen in Figure 31 of the Appendix.

Figure 8: ROC curve for Section 2.3.4. Its respective

transfer learning progress graph of accuracy and loss

can be seen in Figure 32 of the Appendix.

The structure of the Keras neural network contains 3

layers of convolutional layer 32, 3x3 filters with an

activation function of ReLU. 3 layers of pooling layers

with a kernel size of 3x3. 1 flatten layer. 2 dense layers

with 32 neutrons and activation function of ReLU. 1

dense layer of 1 neuron and an activation function of

sigmoid.

6

Figure 9: The structure of CNN.

In addition to the Keras CNN structure, the accuracy

of this model reached 95%. One problem with this is

that the test dataset was overfitted because of the rise

in validation loss. Although an auto stop was

enforced, the validation loss still rose. Compared to

the squeezenet CNN for transfer learning, the Keras

CNN would be considered unstable because the

Keras CNN’s validation loss rose considerably.

Compared to the LST-SVM, the accuracy is nearly

5% higher and the ROC curves of the CNNs show

that there is some leeway for the FPR versus TPR,

approaching nearly 90% TPR with nearly 0% FPR,

while the LST-SVM gives nearly a 55% TPR for 0%

FPR. Even though the LST-SVM models the training

dataset quickly in less than two minutes, the high

accuracy and low TPR is undesirable. At the cost of

the time taken to train and apply the network to the

test dataset, the CNN is better than the LST-SVM as

shown in the ROC curves and validation accuracies.

Figure 10: Plot of the validation accuracy

Figure 11: Plot of validation loss

6. DISCUSSION

6a. LST-SVM

Shown below are some images that were classified as

true positive, true negative, false positive, and false

negative, respectively.

Figure 12 is one of the easier true positive images to

classify in the test set because there are only a few

colors in the image, and they are all warm. This image

clearly has clouds and a horizon with warm colors in

the majority of the image, and low brightness.

Figure 12: sunset\13610943374_102cbf1185_z.jpg

classified as a true positive with a distance score of

2.4513.

With a distance score of 0.0074859, Figure 13 is one

of the harder true positive images to classify in the test

set because although the entire image is warm and

vibrant with only the horizon being black, there are

colorful objects in the foreground that might make it

harder for the LST-SVM to classify the image

correctly.

7

Figure 13: sunset\12858408714_3a2dfa374f_z.jpg

classified as a true positive with a distance of

0.0074859.

Figure 14 is an image of a deer, and has no warm

colors, streaks of clouds, a city skyline, a sun’s

reflection, or anything that sunset image has, making

this image easy for the LST-SVM to classify the

image.

Figure 14:nonsunset\4149765026_8b00482eb8_z.jpg

classified as a true negative with a distance of -2.1896.

In this image, there are warm colors from the wooden

chairs and wall, but the LST-SVM classified this

image as a non-sunset because of the green plants on

top of the bench. Normally, a sunset image does not

have green in the sky (in the top half of the image), but

since this image in Figure 15, has green plants in the

top half of the image, this image is classified as a non-

sunset.

Figure 15:nonsunset\4096288056_fb57a94967_z.jpg

classified as a true negative with a distance of -

0.0047136.

Figure 16 shows an image of a surfer with the ocean

and an orange backdrop on the top of the image. The

LST-SVM has falsely classified this image as a sunset

because the top half portion of the image has warm

colors, and the bottom half has darker colors.

Figure 16:nonsunset\3988986067_cc4d5d8094_z.jpg

classified as a false positive with a distance of

0.65022.

8

Figure 17 shows an image of a flower in the

foreground with more warm colored flowers in the

background. The LST-SVM has probably detected the

blur of the background flowers as streaks of clouds and

the dark background as an ocean horizon or

mountains. What makes this image interesting is that

the flower in the foreground should make the image be

detected as a non-sunset because of the many colors in

the region.

Figure 17: nonsunset\4134856200_75f52720ec_z.jpg

classified as a false positive with a distance of

0.00097362.

The tree in the upper quarter of the image in Figure 18

blocks the sky, making the LST-SVM classify the

image as a non-sunset even with the warm colors in

the center horizon of the image.

Figure 18: sunset\13639141365_cf7182808a_z.jpg

classified as a false negative with a distance of -

0.0030367.

The image in Figure 19 was falsely detected as a non-

sunset because of the scattered trees in the portion of

the image with the sky and the sun.

Figure 19: sunset\13122476943_9b44e86aa6_z.jpg

classified as a false negative with a distance of -

1.3203.

A test set accuracy of 89.6% is a questionably high

number for the LST-SVM. This is due to the LST-

SVM classifying an image as a sunset if the image has

warm colors in the top half of the image and dark

colors in the bottom half of the image. In addition, it

may misclassify an image as a non-sunset if the image

has scattered colors in the image, especially in the

location of the sky or sun, or may classify an image as

non-sunset if it has no warm colors in the image. In

short, the LST-SVM memorizes the exact details of

the training images and applies those specific details

to the entire test dataset. Looking at the 15% FPR and

the way the LST-SVM is generated, it makes sense

that the LST-SVM is simply looking for regional

details of the warm colors and may misclassify images

as a sunset.

6b. CNN

Shown below are some images that were classified as

true positive (Figure 20 and Figure 21), true negative

(Figure 22 and Figure 23), false positive (Figure 24

9

and Figure 25), and false negative (Figure 26 and

Figure 27).

Figure 20 is recognized as sunset even though the

color is mainly cold colors. Figure 21 has few warm

colors that are detected by the CNN as a sunset.

Figure 20: sunset\12574445733_fd40d5655a_z.jpg

Figure 21: sunset\1414426559_4be2a4877d_z.jpg

Figure 22 correctly classifies the surfer image as a

non-sunset image mainly because the CNN was

trained on disoriented images, so the warm sky and the

ocean waves are differentiated. Figure 23 is clearly not

a sunset and was probably easy for the CNN to classify

the image based on the bright yellow color.

Figure 22:nonsunset\3970853125_1c359c85d0_z.jpg

Figure 23:nonsunset\3958305962_23d566fc50_z.jpg

Figure 24 and figure 25 are recognized as sunset even

though they are non-sunset. It is because the two

figures contained mainly warm colors which makes

the system recognize them as sunsets.

Figure 24:nonsunset\4330503230_9dc8a144a_z.jpg

Figure 25:nonsunset\4295420598_57b781a27d_z.jpg

Figure 26 and figure 27 are recognized as non-sunset

even though they are sunset. It recognized figure 26 as

non-sunset because it did not contain the warm colors

which makes the system detect the image as a non-

sunset. Figure 27 was possibly classified as a non-

10

sunset because the portion of the purple sky is small

compared to the roads and buildings.

Figure 26:sunset\13547361514_02e23c93d1_z.jpg

Figure 27: sunset\14400482557_d8c0b904f2_z.jpg

7. CONCLUSION & FUTURE WORK

There were many factors involved in classifying the

sunsets. One of those was the number of features used,

especially the number of regions the images were split

into. If the region sizes were smaller, however, the

standard deviation wouldn’t be as large, affecting the

features. Maybe using a larger database would also

help since there might be more sunsets to classify and

test on. The images themselves were at a set resolution

and were not pixelated as one would see in any image,

so this might have affected the overall feature matrix.

If the pixels were larger in each segment, the standard

deviation would also change. In addition to the

physical features of the images, the LST-SVM would

also overfit the test dataset. A significant error in a

small segment can change the outcome of the

classifier. In the future we would analyze the depth of

the images using Hough transforms and the individual

slopes of the lines could be calculated to find the depth

towards the center of the image or where the sun is

setting.

The convolutional neural networks reached 95% of

accuracy but they can be improved by either adding

more layers to the network, retraining the entire

training dataset, or performing more data

augmentations on the training set. Since the training

dataset only contains 1600 images, by performing data

augmentation and replicating, the size of the data

would increase. Since the convolutional neural

network will perform better on large datasets, the

accuracy would increase.

REFERENCES

[1] Matthew Boutell, Jiebo Luo, and Robert T. Gray.

Sunset scene classification using simulated image

recomposition. IEEE International Conference on

Multimedia and Expo, Baltimore, MD, July 2003.

11

APPENDIX

Table 1: Confusion matrix for the validation set indicating the k scale and box constraint with whole number

increments. The bolded rows show the jump in the false positive and true positive rate.

k bc TP FP FN TN FPR TPR ACC Support Vector Ratio

1 1 129 11 171 289 0.036666667 0.43 0.696666667 0.91125

1 2 146 15 154 285 0.05 0.486666667 0.718333333 0.91875

1 3 146 15 154 285 0.05 0.486666667 0.718333333 0.92125

1 4 146 15 154 285 0.05 0.486666667 0.718333333 0.92125

1 5 146 15 154 285 0.05 0.486666667 0.718333333 0.92125

1 6 146 15 154 285 0.05 0.486666667 0.718333333 0.92125

1 7 146 15 154 285 0.05 0.486666667 0.718333333 0.92125

1 8 146 15 154 285 0.05 0.486666667 0.718333333 0.92125

1 9 146 15 154 285 0.05 0.486666667 0.718333333 0.92125

1 10 146 15 154 285 0.05 0.486666667 0.718333333 0.92125

2 1 281 69 19 231 0.23 0.936666667 0.853333333 0.499375

2 2 285 75 15 225 0.25 0.95 0.85 0.50375

3 1 288 79 12 221 0.263333333 0.96 0.848333333 0.41875

2 3 287 82 13 218 0.273333333 0.956666667 0.841666667 0.510625

4 1 287 82 13 218 0.273333333 0.956666667 0.841666667 0.41625

Table 2: Confusion matrix for the validation set indicating the k scale and box constraint. The bolded rows show the

chosen best and the auto generated best, respectively.

k bc TP FP FN TN FPR TPR ACC Support Vector Ratio

1 1.5 148 16 152 284 0.053333333 0.493333333 0.72 0.91625

1.1 1 178 23 122 277 0.076666667 0.593333333 0.758333333 0.856875

1.1 1.5 192 25 108 275 0.083333333 0.64 0.778333333 0.866875

1.1 2 190 25 110 275 0.083333333 0.633333333 0.775 0.870625

1.1 4 189 25 111 275 0.083333333 0.63 0.773333333 0.875625

…. …. …. …. …. …. …. …. …. ….

12

1.2 1 214 30 86 270 0.1 0.713333333 0.806666667 0.8025

1.2 2.5 226 33 74 267 0.11 0.753333333 0.821666667 0.821875

1.2 3 225 33 75 267 0.11 0.75 0.82 0.824375

1.2 1.5 223 34 77 266 0.113333333 0.743333333 0.815 0.81625

1.2 3.5 225 34 75 266 0.113333333 0.75 0.818333333 0.825

1.2 4 225 34 75 266 0.113333333 0.75 0.818333333 0.825625

1.2 2 225 36 75 264 0.12 0.75 0.815 0.82

1.3 1 238 36 62 264 0.12 0.793333333 0.836666667 0.738125

1.4 1 252 45 48 255 0.15 0.84 0.845 0.695

…. …. …. …. …. …. …. …. …. ….

2.8 2.5 291 88 9 212 0.293333333 0.97 0.838333333 0.4

…. …. …. …. …. …. …. …. …. ….

2.7 4 293 10

1

7 199 0.336666667 0.976666667 0.82 0.413125

13

Figure 28: The last few layers of the architecture of the modified squeezenet. The highlighted layers are the layers

that were modified from squeezenet’s original convolution layer to the new_conv and original classification output to

the new_classoutput.

Figure 29: Respective transfer learning progress graph of accuracy and loss from Section 2.3.1. Number of

iterations/Number of epochs: 1320/6, Batch size: 10, Learning rate: 0.0003, Training time (Single GPU): 6 minutes

11 seconds.

14

Figure 30: Respective transfer learning progress graph of accuracy and loss from Section 2.3.2. Number of

iterations/Number of epochs: 660/6, Batch size: 20, Learning rate: 0.0003, Training time (Single GPU): 5 minutes 34

seconds.

Figure 31: Respective transfer learning progress graph of accuracy and loss from Section 2.3.3. Number of

iterations/Number of epochs: 660/6, Batch size: 20, Learning rate: 0.0003, Training time (Single GPU): 6 minutes 37

seconds.

15

Figure 32: Respective transfer learning progress graph of accuracy and loss from Section 2.3.4. Number of

iterations/Number of epochs: 1100/10, Batch size: 20, Learning rate: 0.0003, Training time (Single GPU): 11 minutes

2 seconds.

16

Figure 33: Iterations taken to choose the best kernel scale value and the best box constraint value for the LST-SVM.

