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ABSTRACT 

Classifying an image as a sunset or not using an SVM 

is quite difficult because the right kernel scale, box 

constraint, and threshold values must be chosen. This 

project entails converting 3200 different RGB images 

(1600 from the train, 1000 from the test, and 600 from 

the validation datasets) to LST color space, 

segmenting the images into 49 sections and gathering 

the mean and standard deviation of each segment of 

each LST color band. The features (mean and standard 

deviation) are then standardized to a scale of 0 to 1 and 

processed through an SVM based on the train dataset 

to determine if the test dataset contains sunsets (+1) or 

not (-1) using a correctly fitted ROC curve value from 

the threshold values. The baseline LST-SVM has an 

accuracy of 89.6% on the test dataset but is overfitted 

based on the validation dataset. In a second part of the 

project, two CNNs are used to classify the images, one 

from squeezenet for transfer learning and one from 

scratch in Keras. A few observations were made in this 

project: Both CNNs performed better than the LST-

SVM with accuracies of 95% and marginal FPR 

versus TPR ROC curves (nearly 0:0.9). The 

squeezenet CNN, however, provided a more stable 

validation loss function than the from-scratch Keras 

CNN. 

1. INTRODUCTION 

This project is a continuation of Matthew Boutell’s 

research [1]. With the rapid growth of digital image 

data, it has become an increasingly urgent need for 

computers to automatically understand images. As an 

important research topic of understanding the image, 

image classification and recognition (mainly scene 

classification) has received attention. Image 

classification has a wide range of applications in many 

fields of computer vision, such as content-based image 

retrieval, remote sensing image analysis, or video 

surveillance. After decades of development, although 

many encouraging results have been achieved in 

image classification, it is still a very challenging 

problem due to the complexity of the problem itself. 

Image classification is widely used in content-based 

image retrieval. The purpose of content-based image 

retrieval is to search in the image database and find the 

corresponding image that meets the query conditions 

based on the content information or the specified 

query criteria under the premise of a given query 

image. 

Content-based image retrieval refers to the query 

condition itself is an image, or a description of the 

image content. The indexing method is to extract the 

underlying features, and then calculate and compare 

the distance between these features and the query 

condition to determine how similar the two pictures 

are. 

Similar to the content-based image retrieval system, 

we detect sunsets by extracting features from each 

sunset image and putting those features into an SVM 

to calculate the distance between the features of 

different images to predict whether an image can be 

classified as sunset. We also run two different CNNs 

on the raw RGB images. 

More applications of this method would be classifying 

flowers in images or objects soaring through the sky, 

and these tasks are not easy to accomplish because any 

small deviation in the color spaces of the segmented 

images or the SVM model will make the classifier 

worse. Everything from the color space to the RBF 

kernel scale needs to be taken into consideration to 

make the perfect model to predict a sunset. 

Having learned how to visualize and model a two-

dimensional dataset with an SVM in this image 

recognition class, modeling a multidimensional 

dataset (d > 3) becomes difficult because it is hard to 

visualize the data. Even with a matrix of multivariate 

plots, it is time consuming and impossible to visualize 

294 features. 

Our task is to recognize and classify sunset images 

from the website http://sunset.csse.rose-hulman.edu 

with a zipped file of images. Figure 1 shows an image 

of a sunset from the train dataset with warm colors in 

the sky, dark colors on the ground, and a large horizon 

http://sunset.csse.rose-hulman.edu/
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with no interfering objects in the foreground. Figure 2 

shows an image of a non-sunset from the train dataset 

with a bridge as the foreground and no warm, natural 

colors in the sky that could indicate a setting sun. 

 

Figure 1: An image of a sunset. 

 

Figure 2: An image of a non-sunset. 

2. PROCESS 

By converting the images from RGB to LST space, we 

can extract the mean and standard deviation of each 

band of a segmented image to be passed through an 

LST-SVM. A few different preprocessing approaches 

were taken on the CNN classifier. 

The unzipped folder has three subfolders titled train, 

test, and validate and each of these folders has two 

folders with non-sunset images and sunset images. 

The number of non-sunset and sunset images in the 

train, test, and validate sets are 800, 500, and 300, 

each, giving a total of 1600, 1000, and 600 images in 

the train, test, and validate datasets, respectively. 

 

 

2a. LST-SVM Preprocessing 

We first converted the RGB images to LST space and 

divided each image into 49 regions using a 7 x 7 grid. 

Provided are the RGB to LST color space conversion 

equations (Equations 1 to 3): 

𝐿 =  𝑅 +  𝐺 +  𝐵            (1) 

𝑆 =  𝑅 –  𝐵             (2) 

𝑇 =  𝑅 –  2𝐺 +  𝐵            (3) 

The problem with splitting an image into a 7 x 7 grid 

was that some images had uneven dimensions. The 

solution was to remove the last row or column 

depending on the mod operator of the row or column 

and the block size of 7. If either the mod of the row or 

the column and the block size of 7 resulted in 0, the 

end index of the dimension would be removed. 

Removing the last index of a dimension is fine because 

a single row or column would not affect the entire 

feature significantly. Also, the images have enough 

pixels and information at the ends that a one-pixel 

continuation of a dimension is negligible. Shown in 

Figure 3 is an example of a 7 x 7 segmented image of 

the bridge from Figure 2. 

 

Figure 3: The LST space image of the bridge from 

Figure 2. 

We then computed the mean and standard deviation of 

each LST color band. This gives us 294 features for 49 

regions x 3 bands x 2 (mean and variance). The 1600 

sunset and non-sunset images from the train dataset 

were combined with the 1000 sunset and non-sunset 

images from the test dataset giving a 2600 row by 294 

column feature matrix. 

Theoretically, the ranges of values of the LST space 

are L: [0, 765], S: [-255, 255], T: [-510, 510]. Since 

the values have different weights, the matrix was then 
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normalized between 0 and 1 based on the 0-1 feature 

normalization method provided by Equation 4: 

(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑉𝑎𝑙𝑢𝑒) / 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑉𝑎𝑙𝑢𝑒   (4) 

The 2600-row feature matrix is then split back into the 

1600-row train and 1000-row test feature matrices. 

The train feature matrix is passed through an SVM to 

determine the best kernel scale and box constraint 

values that output the lowest false positive rate and the 

highest accuracy and true positive rate on the 

validation dataset. The best kernel scale and box 

constraint values were set to be used on the test dataset 

with a variable threshold value. Again, the best 

threshold value that outputted the lowest false positive 

rate and the highest accuracy and true positive rate was 

considered. 

2b. CNN Preprocessing 

Two different processes were taken by each teammate: 

Chirag Sirigere used transfer learning while Connie 

Zhu used a CNN from scratch in Keras. 

The images were not converted to any color space 

from their original RGB color bands but were rescaled 

to 227 x 227 pixels and were either randomly 

disoriented or not, to be inputted to the squeezenet 

network skeleton for transfer learning. 

The plan for transfer learning was to modify the last 

convolution layer and the classification output layer 

and do the following experiments: 

1. Run with all layers frozen up to the last 

convolution layer and 10 mini batches with a 

maximum of 6 epochs. 

2. Run with all layers frozen up to the last 

convolution layer and 20 mini batches with a 

maximum of 6 epochs. 

3. Run with all layers unfrozen, having the 

algorithm relearn every weight with 20 mini 

batches, with a maximum of 6 epochs and 

disoriented input images to remove the sunset 

and clouds on top. 

4. Run experiment 3 but with 10 epochs instead 

of 6 epochs. 

For the CNN made in Keras, the images were 

normalized from [0, 255] to [0, 1] and the images were 

randomly disoriented. 

3. CLASSIFICATION 

3a. SVM Classifier 

Support Vector Machine (SVM) is a supervised 

learning model which analyzes and classifies data. 

Given a set of training datas, each training data is pre-

labeled as belonging to one or the other of the two 

categories. Then, the SVM builds a model that assigns 

new data to one of the two categories. The SVM model 

puts the data as points in space so that the mapping 

makes the data of individual categories separated by 

the widest possible interval, the margin. This margin 

is a line or nonlinear function plotted in the space that 

contains support vectors. Support vectors are points 

that keep the margin from being too distanced. The 

SVM maps the new data to the same space and predicts 

the category they belong to, based on which side they 

fall on. Using Equation 5 for the Radial-Basis 

Function (RBF), 

𝐾(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝(−
||𝑥−𝑥𝑖||

2

2𝜎2 )                (5) 

the hyperparameter, σ, controls how fast the equation 

tapers off, in other words, the width of the Gaussian 

curve. 

3b. CNN Classifier 

Convolutional Neural Networks are a type of 

feedforward neural network generally composed of 

these types of layers: the input layer, a convolutional 

layer, a ReLU layer, a pooling layer, a fully connected 

classification layer, and a SoftMax function layer. 

These layers not only classify an image or signal, but 

they also learn features in the image or signal, which 

is what makes CNNs useful. In that order, the 

individual layers have the following purposes: 

1. The input layer is an entire dataset of images 

or signals, all rescaled to fit into the neural 

network architecture. 

2. The convolutional layer usually is a 3 x 3 

filter with tens of convolution filters that take 

each image and learn the edges and color 

gradients of the image. 

3. The ReLU layer is a nonlinear transfer 

function that changes the value of the input to 

a new value based on Equation 6 below. 

𝑔(𝑥) = 𝑚𝑎𝑥(𝑥, 0)                  (6) 

4. The pooling layer down samples the 

number of data points from a previous 
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layer by applying a striding function that 

captures the maximum or average value 

in each segment of the previous layer. 

Layers 2, 3, and 4 are often grouped into the 

feature learning subset of layers since they learn 

and determine the different features in the image. 

5. The fully-connected classification layer 

is a neural network of neurons classifying 

the various outputs of the previous 

layers. 

6. The SoftMax function normalizes the 

outputs of the fully-connected 

classification layer to the range [0, 1] 

given by Equation 7 below. 

𝑠(𝑥𝑖) =
𝑒𝑥𝑝(𝑥𝑖)

∑ 𝑒𝑥𝑝(𝑥𝑘)𝑑
𝑘=1

                 (5) 

4. EXPERIMENTAL SETUP 

Originally, the non sunset  and sunset images were 

taken from the photo sharing website Flickr. At least 

2000 sunset images were taken from the website: 

https://www.flickr.com/groups/sunsetcentral/pool/ 

Another approximately 2000 non sunset images were 

selected from the following website: 

https://www.flickr.com/groups/photography-club-of-

flickr/pool/. For the training dataset, 800 images for 

each sunset and non-sunset were taken, along with 500 

images for each sunset and non-sunset in the testing 

dataset. For the validation dataset, 300 sunset images 

and 300 non sunset images are selected. Each RGB 

image has dimensions ranging from 300 pixels to 650 

pixels with a resolution of 96 dpi. 

5. RESULTS 

5a. LST-SVM Results 

There were two ways to determine the best SVM 

kernel scale and box constraint values: automatically 

and manually optimizing for k and bc. 

For the LST-SVM on the validation set, two for loops 

were used to determine each combination of kernel 

scale value from 1 to 10 and box constraint value from 

1 to 10. Shown in Table 1 of the Appendix, we noticed 

a jump in nearly twice the true positive rate between 

the two bolded rows resulting in the need for another 

iteration of different numbers. 

Using the ‘OptimizeHyperparameters’ option of 

‘auto’, we were able to find the second-best kernel 

scale value and box constraint value of 2.8 and 2.5, 

respectively. The accuracy of the SVM on the 

validation set with kernel scale of 2.8 and box 

constraint of 2.5 achieved 84% accuracy with a false 

positive rate of 0.293 and a near perfect true positive 

rate of 0.97. The problem with this was the relatively 

higher FPR compared to a kernel scale and box 

constraint value of 2 and 1, respectively. Figure 33 in 

the Appendix shows the iterations of kernel scale 

values and box constraint values. 

This called for a further fine tuning of the hyper 

parameters. Using the two for loops, our objective was 

to keep the TPR and accuracy above 80% while 

keeping FPR below 20% because if the accuracy were 

less than 80%, say 75%, one would be better off 

randomly guessing if an image has a sunset or not with 

50% accuracy. This was achieved with the kernel scale 

value of 1.4 and 1, shown in Table 2 of the Appendix. 

One downside to this is that the ratio of support vectors 

to the number of observations in the train dataset is 

nearly 0.7, possibly overfitting the validation dataset 

compared to the other hyperparameters with ratios of 

nearly 0.4. 

After tuning the hyperparameters, the LST-SVM was 

run on the test dataset with the kernel scale and box 

constraint values of 1.4 and 1. Figure 4 shows the ROC 

curve of the test set with different decision threshold 

values. From the indicated accuracy, 89.6% at a 

threshold value of 0, the train dataset has overfit the 

test dataset. 

 

Figure 4: The ROC curve of the test dataset. 

https://www.flickr.com/groups/sunsetcentral/pool/
https://www.flickr.com/groups/photography-club-of-flickr/pool/
https://www.flickr.com/groups/photography-club-of-flickr/pool/
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5b. CNN Results 

The transfer learning progress graphs of accuracy and 

loss can be seen in the Appendix. The following 

figures show the ROC curve of the various test dataset 

outputs by varying the threshold between 0 and 1. 

 

Figure 5: ROC curve for Section 2.3.1. Its respective 

transfer learning progress graph of accuracy and loss 

can be seen in Figure 29 of the Appendix. 

 

Figure 6: ROC curve for Section 2.3.2. Its respective 

transfer learning progress graph of accuracy and loss 

can be seen in Figure 30 of the Appendix. 

 

Figure 7: ROC curve for Section 2.3.3. Its respective 

transfer learning progress graph of accuracy and loss 

can be seen in Figure 31 of the Appendix. 

 

Figure 8: ROC curve for Section 2.3.4. Its respective 

transfer learning progress graph of accuracy and loss 

can be seen in Figure 32 of the Appendix. 

The structure of the Keras neural network contains 3 

layers of convolutional layer 32, 3x3 filters with an 

activation function of ReLU. 3 layers of pooling layers 

with a kernel size of 3x3. 1 flatten layer. 2 dense layers 

with 32 neutrons and activation function of ReLU. 1 

dense layer of 1 neuron and an activation function of 

sigmoid. 
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Figure 9: The structure of CNN. 

In addition to the Keras CNN structure, the accuracy 

of this model reached 95%. One problem with this is 

that the test dataset was overfitted because of the rise 

in validation loss. Although an auto stop was 

enforced, the validation loss still rose. Compared to 

the squeezenet CNN for transfer learning, the Keras 

CNN would be considered unstable because the 

Keras CNN’s validation loss rose considerably. 

Compared to the LST-SVM, the accuracy is nearly 

5% higher and the ROC curves of the CNNs show 

that there is some leeway for the FPR versus TPR, 

approaching nearly 90% TPR with nearly 0% FPR, 

while the LST-SVM gives nearly a 55% TPR for 0% 

FPR. Even though the LST-SVM models the training 

dataset quickly in less than two minutes, the high 

accuracy and low TPR is undesirable. At the cost of 

the time taken to train and apply the network to the 

test dataset, the CNN is better than the LST-SVM as 

shown in the ROC curves and validation accuracies. 

 

Figure 10: Plot of the validation accuracy 

 

Figure 11: Plot of validation loss 

6. DISCUSSION 

6a. LST-SVM 

Shown below are some images that were classified as 

true positive, true negative, false positive, and false 

negative, respectively. 

Figure 12 is one of the easier true positive images to 

classify in the test set because there are only a few 

colors in the image, and they are all warm. This image 

clearly has clouds and a horizon with warm colors in 

the majority of the image, and low brightness. 

 

Figure 12: sunset\13610943374_102cbf1185_z.jpg 

classified as a true positive with a distance score of 

2.4513. 

With a distance score of 0.0074859, Figure 13 is one 

of the harder true positive images to classify in the test 

set because although the entire image is warm and 

vibrant with only the horizon being black, there are 

colorful objects in the foreground that might make it 

harder for the LST-SVM to classify the image 

correctly. 
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Figure 13: sunset\12858408714_3a2dfa374f_z.jpg 

classified as a true positive with a distance of 

0.0074859. 

Figure 14 is an image of a deer, and has no warm 

colors, streaks of clouds, a city skyline, a sun’s 

reflection, or anything that sunset image has, making 

this image easy for the LST-SVM to classify the 

image. 

 

Figure 14:nonsunset\4149765026_8b00482eb8_z.jpg 

classified as a true negative with a distance of -2.1896. 

In this image, there are warm colors from the wooden 

chairs and wall, but the LST-SVM classified this 

image as a non-sunset because of the green plants on 

top of the bench. Normally, a sunset image does not 

have green in the sky (in the top half of the image), but 

since this image in Figure 15, has green plants in the 

top half of the image, this image is classified as a non-

sunset. 

 

Figure 15:nonsunset\4096288056_fb57a94967_z.jpg 

classified as a true negative with a distance of -

0.0047136. 

Figure 16 shows an image of a surfer with the ocean 

and an orange backdrop on the top of the image. The 

LST-SVM has falsely classified this image as a sunset 

because the top half portion of the image has warm 

colors, and the bottom half has darker colors. 

 

Figure 16:nonsunset\3988986067_cc4d5d8094_z.jpg 

classified as a false positive with a distance of 

0.65022. 
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Figure 17 shows an image of a flower in the 

foreground with more warm colored flowers in the 

background. The LST-SVM has probably detected the 

blur of the background flowers as streaks of clouds and 

the dark background as an ocean horizon or 

mountains. What makes this image interesting is that 

the flower in the foreground should make the image be 

detected as a non-sunset because of the many colors in 

the region. 

 

Figure 17: nonsunset\4134856200_75f52720ec_z.jpg 

classified as a false positive with a distance of 

0.00097362. 

The tree in the upper quarter of the image in Figure 18 

blocks the sky, making the LST-SVM classify the 

image as a non-sunset even with the warm colors in 

the center horizon of the image. 

 

Figure 18: sunset\13639141365_cf7182808a_z.jpg 

classified as a false negative with a distance of -

0.0030367. 

The image in Figure 19 was falsely detected as a non-

sunset because of the scattered trees in the portion of 

the image with the sky and the sun. 

 

Figure 19: sunset\13122476943_9b44e86aa6_z.jpg 

classified as a false negative with a distance of -

1.3203. 

A test set accuracy of 89.6% is a questionably high 

number for the LST-SVM. This is due to the LST-

SVM classifying an image as a sunset if the image has 

warm colors in the top half of the image and dark 

colors in the bottom half of the image. In addition, it 

may misclassify an image as a non-sunset if the image 

has scattered colors in the image, especially in the 

location of the sky or sun, or may classify an image as 

non-sunset if it has no warm colors in the image. In 

short, the LST-SVM memorizes the exact details of 

the training images and applies those specific details 

to the entire test dataset. Looking at the 15% FPR and 

the way the LST-SVM is generated, it makes sense 

that the LST-SVM is simply looking for regional 

details of the warm colors and may misclassify images 

as a sunset. 

6b. CNN 

Shown below are some images that were classified as 

true positive (Figure 20 and Figure 21), true negative 

(Figure 22 and Figure 23), false positive (Figure 24 
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and Figure 25), and false negative (Figure 26 and 

Figure 27). 

Figure 20 is recognized as sunset even though the 

color is mainly cold colors. Figure 21 has few warm 

colors that are detected by the CNN as a sunset. 

 

Figure 20: sunset\12574445733_fd40d5655a_z.jpg 

 

Figure 21: sunset\1414426559_4be2a4877d_z.jpg 

Figure 22 correctly classifies the surfer image as a 

non-sunset image mainly because the CNN was 

trained on disoriented images, so the warm sky and the 

ocean waves are differentiated. Figure 23 is clearly not 

a sunset and was probably easy for the CNN to classify 

the image based on the bright yellow color. 

 

Figure 22:nonsunset\3970853125_1c359c85d0_z.jpg 

 

 

Figure 23:nonsunset\3958305962_23d566fc50_z.jpg 

Figure 24 and figure 25 are recognized as sunset even 

though they are non-sunset. It is because the two 

figures contained mainly warm colors which makes 

the system recognize them as sunsets.  

 

Figure 24:nonsunset\4330503230_9dc8a144a_z.jpg 

 

Figure 25:nonsunset\4295420598_57b781a27d_z.jpg 

Figure 26 and figure 27 are recognized as non-sunset 

even though they are sunset. It recognized figure 26 as 

non-sunset because it did not contain the warm colors 

which makes the system detect the image as a non-

sunset. Figure 27 was possibly classified as a non-
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sunset because the portion of the purple sky is small 

compared to the roads and buildings. 

 

Figure 26:sunset\13547361514_02e23c93d1_z.jpg 

 

Figure 27: sunset\14400482557_d8c0b904f2_z.jpg 

 

7. CONCLUSION & FUTURE WORK 

There were many factors involved in classifying the 

sunsets. One of those was the number of features used, 

especially the number of regions the images were split 

into. If the region sizes were smaller, however, the 

standard deviation wouldn’t be as large, affecting the 

features. Maybe using a larger database would also 

help since there might be more sunsets to classify and 

test on. The images themselves were at a set resolution 

and were not pixelated as one would see in any image, 

so this might have affected the overall feature matrix. 

If the pixels were larger in each segment, the standard 

deviation would also change. In addition to the 

physical features of the images, the LST-SVM would 

also overfit the test dataset. A significant error in a 

small segment can change the outcome of the 

classifier. In the future we would analyze the depth of 

the images using Hough transforms and the individual 

slopes of the lines could be calculated to find the depth 

towards the center of the image or where the sun is 

setting. 

The convolutional neural networks reached 95% of 

accuracy but they can be improved by either adding 

more layers to the network, retraining the entire 

training dataset, or performing more data 

augmentations on the training set. Since the training 

dataset only contains 1600 images, by performing data 

augmentation and replicating, the size of the data 

would increase. Since the convolutional neural 

network will perform better on large datasets, the 

accuracy would increase.  
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APPENDIX 

Table 1: Confusion matrix for the validation set indicating the k scale and box constraint with whole number 

increments. The bolded rows show the jump in the false positive and true positive rate. 

k bc TP FP FN TN FPR TPR ACC Support Vector Ratio 

1 1 129 11 171 289 0.036666667 0.43 0.696666667 0.91125 

1 2 146 15 154 285 0.05 0.486666667 0.718333333 0.91875 

1 3 146 15 154 285 0.05 0.486666667 0.718333333 0.92125 

1 4 146 15 154 285 0.05 0.486666667 0.718333333 0.92125 

1 5 146 15 154 285 0.05 0.486666667 0.718333333 0.92125 

1 6 146 15 154 285 0.05 0.486666667 0.718333333 0.92125 

1 7 146 15 154 285 0.05 0.486666667 0.718333333 0.92125 

1 8 146 15 154 285 0.05 0.486666667 0.718333333 0.92125 

1 9 146 15 154 285 0.05 0.486666667 0.718333333 0.92125 

1 10 146 15 154 285 0.05 0.486666667 0.718333333 0.92125 

2 1 281 69 19 231 0.23 0.936666667 0.853333333 0.499375 

2 2 285 75 15 225 0.25 0.95 0.85 0.50375 

3 1 288 79 12 221 0.263333333 0.96 0.848333333 0.41875 

2 3 287 82 13 218 0.273333333 0.956666667 0.841666667 0.510625 

4 1 287 82 13 218 0.273333333 0.956666667 0.841666667 0.41625 

 

Table 2: Confusion matrix for the validation set indicating the k scale and box constraint. The bolded rows show the 

chosen best and the auto generated best, respectively. 

k bc TP FP FN TN FPR TPR ACC Support Vector Ratio 

1 1.5 148 16 152 284 0.053333333 0.493333333 0.72 0.91625 

1.1 1 178 23 122 277 0.076666667 0.593333333 0.758333333 0.856875 

1.1 1.5 192 25 108 275 0.083333333 0.64 0.778333333 0.866875 

1.1 2 190 25 110 275 0.083333333 0.633333333 0.775 0.870625 

1.1 4 189 25 111 275 0.083333333 0.63 0.773333333 0.875625 

…. …. …. …. …. …. …. …. …. …. 
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1.2 1 214 30 86 270 0.1 0.713333333 0.806666667 0.8025 

1.2 2.5 226 33 74 267 0.11 0.753333333 0.821666667 0.821875 

1.2 3 225 33 75 267 0.11 0.75 0.82 0.824375 

1.2 1.5 223 34 77 266 0.113333333 0.743333333 0.815 0.81625 

1.2 3.5 225 34 75 266 0.113333333 0.75 0.818333333 0.825 

1.2 4 225 34 75 266 0.113333333 0.75 0.818333333 0.825625 

1.2 2 225 36 75 264 0.12 0.75 0.815 0.82 

1.3 1 238 36 62 264 0.12 0.793333333 0.836666667 0.738125 

1.4 1 252 45 48 255 0.15 0.84 0.845 0.695 

…. …. …. …. …. …. …. …. …. …. 

2.8 2.5 291 88 9 212 0.293333333 0.97 0.838333333 0.4 

…. …. …. …. …. …. …. …. …. …. 

2.7 4 293 10

1 

7 199 0.336666667 0.976666667 0.82 0.413125 
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Figure 28: The last few layers of the architecture of the modified squeezenet. The highlighted layers are the layers 

that were modified from squeezenet’s original convolution layer to the new_conv and original classification output to 

the new_classoutput. 

 

Figure 29: Respective transfer learning progress graph of accuracy and loss from Section 2.3.1. Number of 

iterations/Number of epochs: 1320/6, Batch size: 10, Learning rate: 0.0003, Training time (Single GPU): 6 minutes 

11 seconds. 
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Figure 30: Respective transfer learning progress graph of accuracy and loss from Section 2.3.2. Number of 

iterations/Number of epochs: 660/6, Batch size: 20, Learning rate: 0.0003, Training time (Single GPU): 5 minutes 34 

seconds. 

 

Figure 31: Respective transfer learning progress graph of accuracy and loss from Section 2.3.3. Number of 

iterations/Number of epochs: 660/6, Batch size: 20, Learning rate: 0.0003, Training time (Single GPU): 6 minutes 37 

seconds. 



 

15 

 

Figure 32: Respective transfer learning progress graph of accuracy and loss from Section 2.3.4. Number of 

iterations/Number of epochs: 1100/10, Batch size: 20, Learning rate: 0.0003, Training time (Single GPU): 11 minutes 

2 seconds. 
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Figure 33: Iterations taken to choose the best kernel scale value and the best box constraint value for the LST-SVM. 


