

VIOLET TEAM DESIGN

SPECIFICATIONS
Rose-Hulman Institute of Technology CSSE232:

Computer Architecture I

Drew Egler, William Gardner, Athena Henderson, Chirag Sirigere

 1

High Level Design Description

The processor being designed by the group will utilize a stack architecture. This means that all

instructions will be done through the pushing and popping of values in and off the stack. No registers will

be utilized by users since most of the process will be done with the stack and the memory. Our design will

utilize three basic 2-byte instruction formats. First is the P-type. Here, 5-bits will be dedicated to the

opcode, 8-bits will be for the immediate, 1-bit will be for determining if the value is the upper or lower

half of a 16-bit number, and 2-bits will be the dead space, which means they are a “do not care.” The P-

type will be used for instructions including push and all branching. Second is the A-type. Here, 5-bits will

be dedicated to the opcode and 1-bit is for swapping the order of stack parts used in operations. For

instance, subtraction would become Stack(sp0) = Stack(sp1) - Stack(sp0). The other 10-bits will be dead-

bits. The A-type will be used for instructions based around bit arithmetic and addresses, including alu

operations, pop, peek, loads from memory, and jumps. Third is the S-Type. Here, 5-bits will be dedicated

to the opcode, and 3-bits will be for the shift amount, or “SHAMT” for short. The other 8-bits will be

dead-bits. The S-type will be used for all bit shifting.

Instruction Formats

P-Type

5 8 1 2

Opcode Immediate isUpper Don’t Care

A-Type

5 1 10

Opcode Swap (swaps order of

stack used in operation)

Don’t Cares

S-Type

5 3 8

Opcode Shift Amount Don’t Cares

The instructions are made with idea of operations for relPrime, basic math, and combinational

logic in mind. Each of the A-type formatted instructions will remove either one or two numbers off the

stack. The branches always remove the numbers they used for comparisons, and push is used to put

information on the stack. Jumps, pop, and peek require that you have their address on the stack before

calling them. This is further explained in the operations section of the instruction set table. There is a key

at the bottom of the table to help explain the jargon used in each operation.

Instruction Set

NAME FORMAT OPERATION OPCODE

Add A sp0 = Remove(sp0) + Remove(sp1) 00000

Add: The top two values are popped off the stack and added together. The result is

then put back on top of the stack.

And A sp0 = Remove(sp0) & Remove(sp1) 00001

And: The top two values are popped off the stack and the AND operation is used on

them. The result is then put back on top of the stack.

Beq P if (Remove(sp0) == Remove(sp1))

PC = PC + 2 + SEAddr

00010

 2

Branch if EQual: The top two values are popped off the stack and compared. If the

two are equal, then branch to the new address.

Bez P if (Remove(sp0) == 0)

PC = PC + 2 + SEAddr

00011

Branch if Equal to Zero: The top value is popped off the stack and compared. If the

value is equal to 0, then branch to the new address.

Bge P if (Remove(sp0) >= Remove(sp1))

PC = PC + 2 + SEAddr

00100

Branch if Greater than or Equal: The top two values are popped off the stack and

compared. If the first value is greater than or equal to the second, then branch to the

new address.

Bgt P if (Remove(sp0) > Remove(sp1))

PC = PC + 2 + SEAddr

00101

Branch if Greater Than: The top two values are popped off the stack and compared. If

the first value is greater than the second, then branch to the new address.

Ble P if (Remove(sp0) <= Remove(sp1))

PC = PC + 2 + SEAddr

00110

Branch if Less than or Equal: The top two values are popped off the stack and

compared. If the first value is less than or equal to the second, then branch to the new

address.

Blt P if (Remove(sp0) < Remove(sp1))

PC = PC + 2 + SEAddr

00111

Branch if Less Than: The top two values are popped off the stack and compared. If the

first value is less than the second, then branch to the new address.

Bne P if (Remove(sp0) != Remove(sp1))

PC = PC + 2 + SEAddr

01000

Branch if Not Equal: The top two values are popped off the stack and compared. If the

two are not equal, then branch to the new address.

Bnz P if (Remove(sp0) != 0)

PC = PC + 2 + SEAddr

01001

Branch if Not equal to Zero: The top value is popped off the stack and compared. If

the value is not equal to 0, then branch to the new address.

Inc A sp0 = Remove(sp0) + 1 01010

Increment/Increase: The top value is popped off the stack and increased by 1. The

result is then put back on top of the stack.

J A PC = Remove(sp0) 01011

Jump: The PC is set to the top value popped off the stack.

Jal A PC = Remove(sp0); sp0 = (PC+2) 01100

Jump And Link: While it adds 2 to the old PC, PC is also set to the top value popped

off the stack, then the address of the next instruction is put on top of the stack.

LShift S sp0 = Remove(sp0) << SHAMT 01101

Left Shift: The top value is popped off the stack and is shifted left SHAMT amount

with ‘b0s. The result is then put back on top of the stack.

LShiftSE S sp0 = Remove(sp0) << SHAMT

(shifts in ‘b1s instead of ‘b0s)

01110

Left Shift Sign Extend: The top value is popped off the stack and is shifted left

SHAMT amount with 1s. The result is then put back on top of the stack.

Nor A sp0 = ~(Remove(sp0) | Remove(sp1)) 01111

Nor: The top two values are popped off the stack and the NOR operation is used on

them. The result is then put back on top of the stack.

 3

Or A sp0 = Remove(sp0) | Remove(sp1) 10000

Or: The top two values are popped off the stack and the OR operation is used on them.

The result is then put back on top of the stack.

Peek A MEM[sp0] = sp1; Remove(sp0) 10001

Peek/Store word: The second from the top value is popped off the stack and is stored

into memory at the address that is on top of the stack. The Address is removed from

the stack, but the value stays.

Pop A MEM[sp0] = Remove(sp1); Remove(sp0) 10010

Pop: The second from the top value is popped off the stack and is stored into memory

at the address that is on top of the stack. Both values are removed from the stack.

Pusha A sp0 = MEM[sp0] 10011

Push from Address/Load word: A value at the address on top of the stack is put on top

of the stack.

Push P if (isUpper == 0) then

sp0 = ZEImm

else

sp0 = UpImm

10100

Push: The immediate passed in is put on top of the stack.

RShift S sp0 = Remove(sp0) >> SHAMT 10101

Right Shift: The top value is popped off the stack and is shifted right SHAMT amount

with ‘b0s. The result is then put back on top of the stack.

RShiftSE S sp0 = Remove(sp0) >> SHAMT

(shifts in ‘b1s instead of ‘b0s)

10110

Right Shift Sign Extend: The top value is popped off the stack and is shifted right

SHAMT amount with ‘b1s. The result is then put back on top of the stack.

Sub A if (Swap == 0) then

sp0 = Remove(sp0) - Remove(sp1)

else

sp0 = Remove(sp1) - Remove(sp0)

10111

Subtract: The top two values are popped off the stack and subtracted together. The

result is then put back on top of the stack.

Xor A sp0 = Remove(sp0) ⊕ Remove(sp1) 11000

Xor: The top two values are popped off the stack and the XOR operation is used on

them. The result is then put back on top of the stack.

Key

sp# # of slots away from the top of the stack (i.e. sp0 = top of stack)

Remove Removes that information from that stack slot

PC Program Counter

MEM Memory

SEAddr {7{immediate [7]}, Immediate, 1’b0}

ZEImm {8’b0, Immediate}

UpImm {Immediate, 8’b0}

SHAMT Shift Amount

INPUT Input value externally from processor

 4

Below are the two different addressing types for memory. Since the client wanted 10-bit addresses, we

use the byte addresses to access the different values within memory. However, since words need to be 16-

bits, we translate the byte addressing to word addressing. The processor uses byte addressing for memory,

but when it goes to read, it translates the byte address into word address to pull out full 16-bit numbers.

Byte Addressed Memory Allocation for 10-bit Memory Block

 8 Bytes 8 Bytes

0xfffe (65,534)

0x0402 (1026)

Dead Memory

64,508 B

sp: 0x0400 (1024) Memory Stack ↓

288 B

Dynamic Data ↑

0x02E2 (738)

0x02E0 (736) Static Data:

50 B ↑

0x02B0 (688)

0x02AE (686) Text:

586 B ↑

PC: 0x0066 (102)

0x0064 (100) Reserved:

100 B ↑

Address: 0x0000

Word Addressed Memory Allocation for 10-bit Memory Block

 16 Bytes

0x7fff (32,767)

0x0201 (513)

Dead Memory

32,254 W

sp: 0x0200 (512) Memory Stack ↓

144 W

Dynamic Data ↑

0x0171 (369)

0x0170 (368) Static Data:

25 W ↑

0x0158 (344)

0x0157 (343) Text:

293 W ↑

PC: 0x0033 (51)

0x0032 (50) Reserved:

50 W ↑

Address: 0x0000

0x0400 Lower Data [7:0] Upper Data [15:8]

… … …

0x0000 Lower Data [7:0] Upper Data [15:8]

0x0200 Data [15:0]

… …

0x0000 Data [15:0]

 5

Static Variables

 There are four pre-determined static variables for all functions to use. These four variables are

described below. The rest of the space in static variables is for other variables.

0x02B0 = ans

 This is where return values from functions will be stored.

0x02B2 = i

 This is where loop indexes can be stored.

0x02B4 = n

 This is where an input for functions will be stored.

0x02B6 = m

This is where another input for functions can be stored.

Procedure Calling Conventions

 Below are translations for the following high-level code to this processor’s assembly and machine

code next to its PC addresses. These snippets are meant to give examples of how to use the assembly code

for its main purpose, relPrime, and different common coding tasks, such as loops and recursion.

For two numbers to be relatively prime, their greatest common divisor (gcd) must be one (i.e.

they must have no common divisors other than one). Euclid's algorithm is used to determine the gcd of

two numbers.

High Level Language Assembly Code Machine Code PC Address
int relPrime(int n)

{

 int m;

 m = 2;

 while (gcd(n, m) != 1) {

 m = m + 1;

 }

 return m;

}

int gcd(int a, int b) {

 if (a == 0) {

 return b;

 }

 while (b != 0) {

 if (a > b) {

 a = a - b;

 } else {

 b = b - a;

 }

 }

 return a;

}

RELPRIME:

P Push 2

 LOOP:

P Push LOWER(m)

P Push UPPER(m)

A Or

A Peek

P Push LOWER(b)

P Push UPPER(b)

A Or

A Peek

P Push LOWER(n)

P Push UPPER(n)

A Or

A Pusha

P Push LOWER(a)

P Push UPPER(a)

A Or

A Pop

P Push LOWER(GCD)

P Push UPPER(GCD)

A Or

A Jal

P Push LOWER(ans)

P Push UPPER(ans)

A Or

A Pusha

P Push 1

RELPRIME:

A010

 LOOP:

A5B0

A014

8000

8800

A5D0

A014

8000

8800

A5A0

A014

8000

9800

A5C0

A014

8000

9000

A5B0

A004

8000

6000

A580

A014

8000

9800

A008

0x66

0x68

0x6A

0x6C

0x6E

0x70

0x72

0x74

0x76

0x78

0x7A

0x7C

0x7E

0x80

0x82

0x84

0x86

0x88

0x8A

0x8C

0x8E

0x90

0x92

0x94

0x96

0x98

 6

P Beq END

A Inc

P Push LOWER(LOOP)

P Push UPPER(LOOP)

A Or

A J

 END:

P Push LOWER(ans)

P Push UPPER(ans)

A Or

P Pop

P Push LOWER(RTN)

P Push UPPER(RTN)

A Or

A J

GCD:

P Push LOWER(a)

P Push UPPER(a)

A Or

A Pusha

P Bnz LOOP

P Push LOWER(b)

P Push UPPER(b)

A Or

A Pusha

P Push LOWER(ans)

P Push UPPER(ans)

A Or

P Pop

P Push LOWER(RTN)

P Push UPPER(RTN)

A Or

A J

 LOOP2:

P Push LOWER(b)

P Push UPPER(b)

A Or

A Pusha

P Bez END

P Push LOWER(a)

P Push UPPER(a)

A Or

A Pusha

P Push LOWER(b)

P Push UPPER(b)

A Or

A Pusha

P Push LOWER(a)

P Push UPPER(a)

A Or

A Pusha

P Push LOWER(b)

P Push UPPER(b)

A Or

A Pusha

P Bge ELSE2

A Sub (swapped)

1028

5000

A340

A004

8000

5800

 END:

A580

A014

8000

9000

A1A0

A00C

8000

5800

 GCD:

A5C0

A014

8000

9800

4860

A5D0

A014

8000

9800

A580

A014

8000

9000

A1A0

A00C

8000

5800

 LOOP2:

A5D0

A014

8000

9800

1910

A5C0

A014

8000

9800

A5D0

A014

8000

9800

A5C0

A014

8000

9800

A5D0

A014

8000

9800

2038

BC00

0x9A

0x9C

0x9E

0xA0

0xA2

0xA4

0xA6

0xA8

0xAA

0xAC

0xAE

0xB0

0xB2

0xB4

0xB6

0xB8

0xBA

0xBC

0xBE

0xC0

0xC2

0xC4

0xC6

0xC8

0xCA

0xCC

0xCE

0xD0

0xD2

0xD4

0xD6

0xD8

0xDA

0xDC

0xDE

0xE0

0xE2

0xE4

0xE6

0xE8

0xEA

0xEC

0xEE

0xF0

0xF2

0xF4

0xF6

0xF8

0xFA

0xFC

0xFE

0x100

0x102

0x104

 7

P Push LOWER(a)

P Push UPPER(a)

A Or

P Pop

P Push 0

P Bez ELSE3

 ELSE2:

A Sub

P Push LOWER(b)

P Push UPPER(b)

A Or

P Pop

 ELSE3:

P Push LOWER(LOP2)

P Push UPPER(LOP2)

A Or

A J

 END2:

P Push LOWER(a)

P Push UPPER(a)

A Or

A Pusha

P Push LOWER(ans)

P Push UPPER(ans)

A Or

P Pop

 RTN:

A J

A5C0

A014

8000

9000

A000

1828

 ELSE2:

B800

A5D0

A014

8000

9000

 ELSE3:

A6C0

A004

8000

5800

 END2:

A5C0

A014

8000

9800

A580

A014

8000

9000

 RTN:

5800

0x106

0x108

0x10A

0x10C

0x10E

0x110

0x112

0x114

0x116

0x118

0x11A

0x11C

0x11E

0x120

0x122

0x124

0x126

0x128

0x12A

0x12C

0x12E

0x130

0x132

0x134

if (n == 0) {

 n++;

} else {

 n = 2;

}

P Push LOWER(n)

P Push UPPER(n)

A Or

A Pusha

P Bnz ELSE

P Push LOWER(n)

P Push UPPER(n)

A Or

A Pusha

A Inc

P Push LOWER(n)

P Push UPPER(n)

A Or

A Pop

P Push LOWER(END)

P Push UPPER(END)

A Or

A J

 ELSE:

P Push 2

P Push LOWER(n)

P Push UPPER(n)

A Or

A Pop

 END:

A5A0

A014

8000

9800

4868

A5A0

A014

8000

9800

5000

A5A0

A014

8000

9000

A464

A004

8000

5800

 ELSE:

A010

A5A0

A014

8000

9000

 END:

0x66

0x68

0x6A

0x6C

0x6E

0x70

0x72

0x74

0x76

0x78

0x7A

0x7C

0x7E

0x80

0x82

0x84

0x86

0x88

0x8A

0x8C

0x8E

0x90

0x92

while (n != 0) {

 n = n - m

}

 LOOP:

P Push LOWER(n)

P Push UPPER(n)

A Or

 LOOP:

A5A0

A014

8000

0x66

0x68

0x6A

 8

A Pusha

P Bez END

P Push LOWER(m)

P Push UPPER(m)

A Or

A Pusha

P Push LOWER(n)

P Push UPPER(n)

A Or

A Pusha

A Sub

P Push LOWER(n)

P Push UPPER(n)

A Or

A Pop

P Push LOWER(LOOP)

P Push UPPER(LOOP)

A Or

A J

9800

1888

A5B0

A014

8000

9800

A5A0

A014

8000

9800

B800

A5A0

A014

8000

9000

A330

A004

8000

5800

0x6C

0x6E

0x70

0x72

0x74

0x76

0x78

0x7A

0x7C

0x7E

0x80

0x82

0x84

0x86

0x88

0x8A

0x8C

0x8E

0x90

int count = 0;

for (int i = 0; i < n; i++) {

 count++;

}

P Push 0

P Push 0

P Push LOWER(i)

P Push UPPER(i)

A Or

A Pop

 LOOP:

P Push LOWER(n)

P Push UPPER(n)

A Or

A Pusha

P Push LOWER(i)

P Push UPPER(i)

A Or

A Pusha

P Bge END

A Inc

P Push LOWER(i)

P Push UPPER(i)

A Or

A Pusha

A Inc

P Push LOWER(i)

P Push UPPER(i)

A Or

A Pop

P Push LOWER(LOOP)

P Push UPPER(LOOP)

A Or

A J

A000

A000

A590

A014

8000

9000

 LOOP:

A5A0

A014

8000

9800

A590

A014

8000

9800

2070

5000

A590

A014

8000

9800

5000

A590

A014

8000

9000

A390

A004

8000

5800

0x66

0x68

0x6A

0x6C

0x6E

0x70

0x72

0x74

0x76

0x78

0x7A

0x7C

0x7E

0x80

0x82

0x84

0x86

0x88

0x8A

0x8C

0x8E

0x90

0x92

0x94

0x96

0x98

0x9A

0x9C

0x9E

 9

int count_down (int n) {

 if (n == 0) {

 return 0;

 }

 return (n +

count_down(n-1));

}

 CD:

P Push LOWER(n)

P Push UPPER(n)

A Or

A Pusha

P Bnz ELSE

P Push 0

P Push LOWER(ans)

P Push UPPER(ans)

A Or

A Pop

P Push LOWER(END)

P Push UPPER(END)

A Or

A J

 ELSE:

P Push LOWER(n)

P Push UPPER(n)

A Or

A Pusha

P Push 1

P Push LOWER(n)

P Push UPPER(n)

A Or

A Pusha

A Sub

P Push LOWER(n)

P Push UPPER(n)

A Or

A Pop

P Push LOWER(CD)

P Push UPPER(CD)

A Or

P Jal

P Push LOWER(ans)

P Push UPPER(ans)

A Or

A Pusha

A Add

P Push LOWER(ans)

P Push UPPER(ans)

A Or

A Pop

 END:

A J

 CD:

A5A0

A014

8000

9800

4848

A000

A580

A014

8000

9000

A5C0

A004

8000

5800

 ELSE:

A5A0

A014

8000

9800

A008

A5A0

A014

8000

9800

B800

A5A0

A014

8000

9000

A330

A004

8000

5800

A580

A014

8000

9800

0000

A580

A014

8000

9000

 END:

5800

0x66

0x68

0x6A

0x6C

0x6E

0x70

0x72

0x74

0x76

0x78

0x7A

0x7C

0x7E

0x80

0x82

0x84

0x86

0x88

0x8A

0x8C

0x8E

0x90

0x92

0x94

0x96

0x98

0x9A

0x9C

0x9E

0xA0

0xA2

0xA4

0xA6

0xA8

0xAA

0xAC

0xAE

0xB0

0xB2

0xB4

0xB6

0xB8

The register transfer language, or RTL, is broken into 6 stages. Most instructions use 3 or 4, but Push

from Address, or Pusha, uses 6 stages in order to grab an address from the stack, grab a value from

memory, store that back on the stack, then allowing the control bits to settle. The stages are called Fetch,

Decode, Execute, Store, Pusha (for pusha to write memory onto the stack), and None for Pusha.

 10

RTL Instructions

This table shows a simplified explanation of the inputs, outputs, and control signals and their size from

our main components. The Register encompasses all registers like PC, the instruction register (IR), the

memory data register (MDR), and the ALU output register (ALUOut). This table is also followed by a

short description of the commponents.

Operations Inst Fetch Inst Decode Execute Store Pusha None

A-Type

(excluding

J, Jal, Pop,

Peek, and

Pusha)

IR = Mem[PC]

PC = PC + 2

isUp = IR[2]

Swap = IR[10]

SHAMT = IR[10:8]

Imm = IR[10:3]

UpImm = Imm<<16

ALUOut = PC

+(SE(Imm)<<1)

if(Swap == 0)then

A = R(sp0); B =

R(sp1)

else

A = R(sp1); B =

R(sp0)

ALUOut = A op B

sp0 = ALUOut

Inc A = R(sp0)

ALUOut = A + 1

sp0 = ALUOut

Branch

between 2

numbers

A = R(sp0)

B = R(sp1)

if(A op B)then

PC=ALUOut

else

Branch

compare to

0

A = R(sp0)

if(A op 0)then

PC = ALUOut

else

Pop A = R(sp0)

B = R(sp1)

Mem[A]=B

Peek A = R(sp0)

B = E(sp1)

Push if(isUp == 1)then

sp0 = UpImm

else

sp0 = Imm

Pusha A = R(sp0) MDR = Mem[A] sp0 = MDR reset

ctrl

J PC = R(sp0)

Jal ALUOut = PC + 2

PC = R(sp0)

sp0 = ALUOut

LShift A = R(sp0)

ALUOut = A << SHAMT

sp0 = ALUOut

LShiftSE A = R(sp0)

ALUOut = A ~<< SHAMT

RShift A = R(sp0)

ALUOut = A >> SHAMT

RShiftSE A = R(sp0)

ALUOut = A ~>> SHAMT

Input Mem[n] = INPUT

 Key

sp# # of slots away from the top of the stack (i.e. sp0 = top of stack)

R(_) Removes that information from that stack slot

E(_) Read the information from that stack slot, but keep it on the stack

 11

 Input Signals Output Signals Control Signals

Memory • Address (15:0)

• Write Data (15:0)

• Memory Data (15:0) • MemWrite

• Clock

Register • Data (15:0)

• Result (15:0)

• Write Enable

• Clock

Stack Memory • Plop (15:0) • sp0 (15:0)

• sp1 (15:0)

• StackWrite

• StackRemove0

• StackRemove1

ALU • A (15:0)

• B (15:0)

• Result (15:0)

• zero?

• negative?

• ALUOp(3:0)

• Memory – PC feeds in new addresses to sets of instructions. Instructions are fed to the stack and other

components to carry out the operation, and to Control to make control signals for the other

components. Data is an integer to be put into a memory location. Address is the location for where to

put/get the Data. Memory Data is the number that was stored in the specified memory location.

MemWrite decides whether to write into a location in memory or not. Memory is always reading

from its address unless MemWrite is on.

• Register – Stores data between cycles to use later. Some registers only save for one cycle, and others

save for until they are told to override the value.

• Stack Memory – Has one input because that is what the stack uses to write onto it. Sp0 is what the

processor retrieves from the top, and sp1 is the second from the top. StackWrite allows numbers to be

written on top of the stack, where StackRemove 0 and 1 remove either the top or second from top

respectively.

• ALU – A and B are the two numbers to go through the ALU and be applied to one of its operations.

Result is the outcome of how A and B are combined within the ALU. ALU Control is what decides

which operation the ALU with preform. “zero?” and “negative?” are flags outputs that are used to tell

whether the processor should branch or not.

List of the RTL symbols that will be implemented

• PC

• Memory

• Stack Memory

• ALU

• Sign Extend

• Shift Left 16 (SL)

Clock Cycle Specification List

• PC saves on the rising edge

• Memory saves on the falling edge

• IR saves on the rising edge

• ALU saves on the rising edge

• ALUOut saves on the rising edge

• Stack saves on the falling edge

Control Signal Description

 12

• Write – The control bit that does two things. One, it allows a value to written onto a stack. Two, it

allows a value to be written onto memory.

• Read – The control bit that does two things, One, it allows a value to be just read from stack.

Two, it allows a value to be read from memory.

• Swap – While a flag in the instruction, it is still important to bring up. If the value of swap is 0,

then value A is sp0 and value B is sp1. If the value of swap is 1, then A is sp1 and B is sp0.

• Op – The control bit that determines which operation to execute within the ALU.

• Remove 0 – The control bit the determines whether sp0 is removed from the stack. If value is 0,

then sp0 is kept on the stack. If value is 1, then sp0 is removed.

• Remove 1 – The control bit the determines whether sp1 is removed from the stack. If value is 0,

then sp1 is kept on the stack. If value is 1, then sp1 is removed.

Integration Plan

• PC: For every time an instruction is ran, the value of the program counter will be taken and added

with 2. Once done, it will travel the wire straight back to PC register.

• Memory Block: The component that takes the PC value and outputs the corresponding

instruction.

• Instruction Register: The component that divides the instruction value from the memory block

and divides it into the corresponding values. In this case, bit 2 is flag isUp, bit 10 is flag swap, bit

10:8 is SHAMT, and bit 10:3 is the immediate value.

• Stack: The component that acts as the storage for all data values. Since every data value exists on

it, there is no need for register number inputs. There will be a control value that will tell what

instruction to execute and the stack will remove values accordingly. One input that does exist is

when a value is placed back onto the stack.

• ALU: The component will take in three values: value A, value B, and the op value. Inside the

ALU will be a number of logic gates that will allow for the correct op to execute.

Integration Plan Tests

• For this there is no official plan for the tests. However, these steps are a maybe.

o To truly test PC, two things can be done. One, just running a normal A-type like add.

This will verify if PC+2 works. Two, somewhere within the test, a jump can test if PC

will change accordingly.

o To test the memory, two tests can be done. Both push and pop will require the memory in

some way. For instance, if a value on memory wants to be pushed onto the stack, the read

control will be enabled, and the value will travel to the stack to be “plopped” onto it. For

pop, the test will be very similar. However, the write control will be enabled, and the

value will be stored onto memory.

o To test the instruction block, any instruction type will be perfect for the test. It would

probably be best to test each instruction type, that being the P-type, A-type, and S-type.

o To test the stack, since all other tests must use the stack to store data, it will be tested

over the course.

o To test the ALU, any A-type will satisfy the needs. It would probably be best if all

instructions that used the ALU were tested.

o THINGS TO NOTE: The crucial thing to remember when writing these tests is the

exceptions that have been forgotten. Test benches will be created when these arise.

 13

Changes made to the Assembly language and Machine language specifications

• Assembly

o Made J, Jal, Peek, Pop, Pusha into A-types to account for the way we have to load 16

addresses inside of the stack by combining/ORing 2 8-bit numbers

o Pusha now loads the integer value from the address on top of the stack, instead of loading

an address from memory

o Peek and Pop now look at the top two spots on the stack as addresses to where to save to

and the number to save to, from top to bottom respectively. Peek keeps only the integer

on the stack, and Pop removes both, the integer and address

o J and Jal now look at the top of the stack for the address to go to and now take a full

address location from the stack rather than being relative to PC

o Pushi is now Push and now instead is used to push 8 bit numbers onto the stack and make

top halves of address using the flag mentioned in the Machine Code section.

• Machine

o All types are now 2 bytes which 5 bits are op code

o P-type has an additional 8 bit immediate, a 1 bit flag to tell if to use it as an upper or not,

and 2 dead bits

o A-type has removed the 2 bits to indicate if the number is an immediate or an address, so

now there are 10 dead bits

o S-type has swapped the position of its SHAMT and immediate, so that it has more focus

on the SHAMT rather than the immediate, since the SHAMT is the main use of S-type

o Updated the Operation descriptions to show how flags affect some operations

Timings and Runtimes

• Cycle Time: 42.362 ns

• Number of Cycles with 0x13B0: 1,254,698

• Execution Time: 0.053151516676 seconds

 14

